面神经炎急性期患者头面部的远红外热像特征分析

周章玲1，姜岳波1，李高波2，高宇红3
1. 中国人民解放军总医院针灸科，北京 100853
2. 山西中医院大学针灸系，山西 太原 030000
3. 中国人民解放军总医院老年医学研究所细胞生物学研究室，北京 100853

目的：观察面神经炎急性期患者头面部远红外热像图的变化，为面神经炎的临床研究提供客观观察指标。

方法：2007 年 4 月至 2010 年 5 月纳入解放军总医院针灸科门诊的面神经炎急性期患者 23 例，并选择 21 例健康体检者为正常对照。采用平面仪使用远红外热像仪（温度精度为 0.05 °C）采集头面部远红外热像图，分析同-受检者左、右两侧面颊、内鼻、眶上及额等测温区内红外热像的温度差，并与正常对照组进行比较。

结果：面神经炎患者患侧 4 个测温区的温度明显不同于健侧，温度差值为 0.1～2.8 °C；正常组 4 个测温区左、右两侧的温度差值为 0.01～0.26 °C。面神经炎患者 4 个测温区的辐射温度差值均高于健康人（P<0.01）。23 例观察组中 14 例呈炎症性改变，7 例呈不对称性，2 例呈缺血性改变。

结论：面神经炎急性期患者的头面部远红外热像特征以炎症性改变为主，远红外热像图能客观地反映面神经炎患者头面部供血状态的变化。

关键词：面神经炎；面神经麻痹；远红外热像；头面部

面神经炎又称 Bell 痉挛（Bell palsy），系指由茎乳突孔内急性非化脓性的神经炎症引起的周围性面神经麻痹[1]。面神经炎为针灸临床常见病，针灸疗效虽好，但不同患者之间仍有较大的差异，有的可恢复如常，也有患者终生不愈，因此，早期的诊断、评判、合理治疗就显得非常重要。运用现代技术，客观地反映面神经炎急性期的病理变化，客观地评估治疗效果都有着十分重要的临床意义。
近年我们采用医用外红外热像仪对急性期患者和正常受试者的头面部进行检测，发现问题的存在与有意义的现象值得探讨。

1 资料与方法

1.1 一般资料 2007年4月至2010年5月，选择解放军总医院针灸科门诊的23例急性期患者，并选择解放军总医院针灸科和老年医学研究所细胞生物学研究室招募的健康体检者21名，设为正常对照组。针灸科医师诊断筛选符合入选标准者，老年医学研究所细胞生物学研究室完成外红外热像图检查。两组患者对检测方案均知情同意。

1.2 诊断标准 根据《内科疾病诊断标准》中"急性"的诊断标准：(1)急性：有类似急性起病；(2)病变部位：眼病症状明显，眼睑不能闭合，流泪，眼睛有显著红肿，不能皱眉；(3)鼻部症状：鼻塞，口角歪向健侧牵引；(4)或有舌前/2/3味觉障碍，咀嚼障碍，面部改变，外耳道或咽部感觉障碍。

1.3 纳入标准 观察组：符合上述诊断标准者；病程7天内的初诊患者，自愿签署知情同意书，发病期间未接受针灸、理疗、局部贴敷治疗。对照组：无急性及慢性疾病的健康体检者。

1.4 排除标准 观察组：其他原因所致面瘫，如中枢性面瘫，肿瘤，外伤，中耳炎，腮腺炎等所致的面瘫；上呼吸道感染，发热或其他明显不适者。对照组：上呼吸道感染，发热，面部症状或其他面部皮肤疾病。

1.5 观察方法

1.5.1 仪器 采用ATIR-M301B重庆伟联公司生产的医用外红外热像仪，为非制冷焦平面数字热像技术，其温度分辨率0.05℃，每幅热像的像素为256×256，空间分辨率为2 mrad。

1.5.2 图像采集 在上午8:30至11:00的门诊时间，受试者进入检查室，室内无明显空气对流，无阳光直接照射，相对湿度在60%左右，室温控制在(23±2)℃，裸露被测者的检查部位并休息10 min。用红外热像仪采集头面部前正位，左右侧位的红外热像图。

1.5.3 观察指标 测量两组受试者头面部外红外热像图中左、右两侧热像表现集中区域的辐射热温度值。预实验后将测温区定为前额，鼻翼，颊部及额4个区域。温度用颜色表示，从高到低分别为白色，红色，黄色，绿色，蓝色，紫色，灰色，黑色。温窗12.8℃。

1.5.4 辐射热温度分析 用M301B医用外红外热像仪提供的专用分析软件，测量两组受试者外红外热像图中两侧面颊区，鼻翼区，前额区及额部4个测温区的辐射热温度值。计算出左，右两侧对称区温度差值。

1.5.5 温差变化分析 观察组患者测温值的温度高于健侧为充血性改变，测温区温度低于健侧为缺血性改变，侧同4个测温区温度高于健侧又低于健侧者为不对称性改变。

1.6 统计学方法 采用Stata 7.0统计软件进行数据分析，定性资料采用百分率(%)描述，定量资料因分布不符合正态分布要求，采用甲位数和四分位四值间距表示，两组受检者侧面部前部4个测温区的辐射热温度差值比较采用秩和检验，P＜0.05为差异有统计学意义。

2 结果

2.1 依从性分析 面神经营养性期的患者23例，男女比例为15:8例，年龄22-74岁，平均年龄39.3岁，左侧发病11例，右侧发病12例，病程2-7d，平均5.6 d。正常对照组21例，其中男性11例，女性10例，年龄24-73岁，平均年龄35.9岁。44例参与者全部进入分析，无脱落。两组性别，年龄差异无统计学意义(P>0.05)，具有可比性。

Related Articles 推荐阅读

孔猛，曾春华，刘玉良，刘盛豪。基于可见反射光谱法的中药舌诊定量与归类分析研究。中西医结合报，2011; 9(1); 29-35。

王德，杨华，王玉勤，中风病及其虚实证候的耳穴电阻抗非线性特征。中西医结合报，2010; 8(6); 525-529。Wang P., Yang HY, Wang YQ. Impedance characteristics of ear acupoints in identifying excess or deficiency syndrome of stroke, J Chin Integr Med. 2010; 8(6); 525-529.

2.2 辐射热湿温 头面部远红外热像图用计算机分别提取左、右对称部位的温度值，并进行统计。23例面神经炎急性期患者头面部左、右两侧远红外热像的结果显示：患者两侧面颊区、内眦区、眶上区及额区温度差值为 0.1~2.8 °C，4个测温区温度明显高于健侧；正常对照组头面部左、右两侧温度差值为 0.01~0.26 °C。4个测温区左、右两侧的温度差异无统计学意义。而神经炎患者4个测温区的辐射热温差值均高于健侧，差异有统计学意义（P < 0.01）。见表1。

2.3 温差定性结果 23 例面神经炎患者中，14 例患侧 4 区温度均高于健侧，呈充血性改变，占病人总数的 60.9%；7 例患侧 4 个测温区既无温度升高又无降低，为不充血性改变；2 例患侧检测区均低于健侧，为缺血性改变，仅占病人总数的 8.7%。若以单个测温区为单位计算，则23 例患者的 92 个测温区中有 72 个区域呈充血性改变，20 个区域为缺血性改变，其分布详见表2。

表1 两组面部4个测温区温差

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>Cheek</th>
<th>Inner canthus</th>
<th>Supraorbital area</th>
<th>Forehead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>21</td>
<td>0.080 (0.100, 0.120)</td>
<td>0.040 (0.100, 0.150)</td>
<td>0.080 (0.090, 0.160)</td>
<td>0.050 (0.090, 0.110)</td>
</tr>
<tr>
<td>Control</td>
<td>23</td>
<td>0.280 (0.500, 0.700)</td>
<td>0.265 (0.400, 0.600)</td>
<td>0.200 (0.300, 0.650)</td>
<td>0.200 (0.300, 0.700)</td>
</tr>
<tr>
<td>μ value</td>
<td>5.122</td>
<td>5.169</td>
<td>5.084</td>
<td>5.017</td>
<td></td>
</tr>
<tr>
<td>P value</td>
<td>0.00</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td></td>
</tr>
</tbody>
</table>

表2 面神经炎患者4个测温区充血与缺血性改变

<table>
<thead>
<tr>
<th>Change</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congestive change</td>
<td>19 (20.7%)</td>
</tr>
<tr>
<td>Ischemic change</td>
<td>4 (4.3%)</td>
</tr>
</tbody>
</table>

3 讨论

正常情况下，机体的自体不断地向周围散发出远红外辐射热能，其变化与机体的循环、代谢及神经功能状态相关。当人体患病或某些生理状态发生变化时，全身或局部散发的远红外辐射热能将受到破坏或影响，在临床上表现为组织温度的升高或降低。如果表浅动脉扩张，说明通过该部位的血流量增多，局部热辐射增强，热图上显示红色高温图像。相反，如果表浅动脉收缩，即通过该部位的血流量相应减少，局部热辐射降低，热图上显示蓝色的低温图像。正常人头面部温度趋于恒定，相差不大，呈平衡状态。当体内组织发生病变时其平衡被破坏，患侧的皮肤温度将发生明显变化，或升高或降低，而呈现热区或冷区。借助于红外热像技术可以清晰及时地发现这种温差变化。

本实验结果显示，正常人面部热像图左右基本对称，无明显差异；而面神经炎急性期患者两侧温度差异明显，最高可达 2.8 °C。而形成温度差的原因与血流量有直接的关系。面瘫发生后，无论是炎症反应、微血管扩张、代谢旺盛或散热减少使温度升高；还是面部组织的功能低下或血液循环障碍致温度降低。在两侧面部温度对称性上有异常表现，因此其面部温度的异常是该病变理变化的必然反映。其机制可能在于面神经炎患者急性期患侧面部表情肌的运动功能丧失，炎症水肿的病理变化，代谢活动异常，导致血液循环发生变化，其浅表血管的血流量会异常，致红外线辐射量不同而使患侧和健侧出现较大的温差。

本实验中，23 例观察组的 4 个测温区的温度呈现明显差异，表现主要为占总数 61% 的病人和占测温区 78% 的患侧温度明显高于健侧，呈充血性改变；而面神经炎急性期头面部的表浅动脉扩张、血流量增加，为实热之象；另有 7 例患者表现为热辐射不对称，即测温区既无温度升高又无降低，说明代谢活动异常，气血逆乱。但这 7 例患者的 28 个测温区中有 15 个区的温度高于健侧，仍表现为充血性改
变，只有2例患者因侧4个测温区完全呈缺血性改变。从现有的检测资料分析，这些不同的变化与年龄、性别、病程以及治疗部位均无明显相关性。但是否与病情轻重程度及其预后有关，或与患者体质及其中医的辨证分型相关？现有资料尚不足以说明，有待以后探讨。

综上所述，作为无创便捷的功能影像检查技术，远红外热图像因能较好地反映头面部供血状态及代谢水平的变化，有望为临床提供面神经炎诊疗效果动态观察的评估指标。目前临床用于客观评估面神经炎病情轻重的方法主要是肌电图检测法，而该法检查费时，有痛苦，患者难以接受，因此该法在面神经炎的疗效评估方面并不普及。红外热像仪除具有安全、方便、无创、客观等特点外，它还能够从机体功能代谢的角度观察疾病的变化，而非局限于机体结构性改变。而病变往往在组织结构上还会有明显改变前，先出现了功能代谢改变，捕捉到这些功能代谢改变，就能为早期诊断、早期治疗以及疗效评价提供重要的信息，科学指导医疗过程。

4 利益冲突

所有作者声明不存在与本文相关的任何利益冲突。

5 作者贡献

由第一、第四作者进行试验设计，第一、第二、第四作者进行试验实施和结果评估，第二、第三作者进行统计分析。

REFERENCES

Analysis of facial far-infrared thermogram of patients with acute facial neuritis

Zhang-ling Zhou, Yue-bo Jiang, Gao-bo Li, Yu-hong Gao

1. Department of Acupuncture and Moxibustion, Chinese PLA General Hospital, Beijing 100853, China
2. Department of Acupuncture and Moxibustion, Shanxi College of Traditional Chinese Medicine, Taiyuan 030000, Shanxi Province, China
3. Laboratory of Cell Biology, Institute of Geriatric Medicine, Chinese PLA General Hospital, Beijing 100853, China

Objective: In order to provide an objective observational index for facial neuritis, the authors monitored the changes of facial far-infrared thermogram in patients with acute facial neuritis.

Methods: A total of 23 patients with acute facial neuritis were enrolled from Department of Acupuncture and Moxibustion, Chinese PLA General Hospital. Another 21 healthy participants were selected as the control
group. Focal plane thermal imaging system (thermal sensitivity 0.05 °C) was applied to collect facial far-infrared thermogram. Temperature differences in the thermogram of both sides of the cheeks, inner canthus, supraorbitalis and forehead of the same patient were compared separately and statistically and analyzed by software provided by the imaging system.

Results: Results of far-infrared thermography of the patients displayed obvious temperature differences ranging from 0.01 to 0.26 °C between two sides of the cheeks, inner canthus, supraorbitalis and forehead areas. In the control group, far-infrared thermogram showed that there were no obvious temperature differences between two sides of the cheeks, inner canthus, supraorbitalis and forehead. There were significant differences in temperature difference in the four monitoring areas between the two groups ($P < 0.01$). Among the 23 patients, there were 14 patients with congestive change, 7 with ischemic change and 2 with both congestive and ischemic changes.

Conclusion: The facial far-infrared thermogram of patients with acute facial neuritis is characterized mainly by congestive changes. Far-infrared thermography can objectively reflect the changes of blood-supply status in patients with facial neuritis.

Keywords: peripheral facial neuritis; facial paralysis; far-infrared thermography; head and facial region

Journal of Chinese Integrative Medicine publishes papers for Study Protocol

Journal of Chinese Integrative Medicine (JCIM) publishes papers for Study Protocol. JCIM believes that publishing clinical study protocols will help improve the standard of medical research by:

- Enabling researchers to obtain feedback on draft study protocols through peer review;
- Enabling readers to compare what was originally intended with what was actually done, thus preventing both "data dredging" and post-hoc revisions of study aims;
- Enabling funders and researchers to see what studies are underway and hence reducing duplication of research effort;
- Enabling systematic reviewers to find trials, which may in turn reduce distortion of the evidence from publication bias;
- Enabling patients to see what studies are underway that they may wish to volunteer for.

Your study protocol published in *JCIM* becomes a fully citable open-access article — freely and universally accessible online, permanently archived. It will also be included in PubMed, further increasing its visibility.

The study protocol can be for proposed or ongoing research. Study protocols will usually be published without peer review if the study has received ethics approval and a grant from a major funding body (proof will be required). Study protocols without funding or ethical approval will be peer reviewed. Proof of both ethics and funding will be required and we recommend that authors provide the relevant documentation on submission.

Protocols of randomized controlled trials should follow the CONSORT guidelines and must have a trial registration number included as the last line of the abstract.

Publishing your study protocol in *JCIM* does not commit you to submitting subsequent reports of the study to us, although we do, of course, welcome such submissions.

Protocols should provide a detailed account of the hypothesis, rationale and methodology of the study. Manuscripts for Study Protocol articles submitted to *JCIM* should be divided into the following sections: Title Page, Abstract (consists of 4 paragraphs, labeled as Background, Methods and Design, Discussion, and Trial Registration), Keywords, Background and Significance/Preliminary Studies, Study Aims, Study Design/Methods, Discussion, Competing interests, Authors’ contributions, Acknowledgements and Funding, References, Figure legends (if any), Tables and captions (if any), Description of additional data files (if any).

Please submit your manuscript at the website of *JCIM* (http://www.jcimjournal.com) or at http://mc03.manuscriptcentral.com/jcim-en via ScholarOne Manuscripts submitting system.