低氧诱导因子 1α 在骨关节炎软骨退变中作用的研究进展

董芳芳，王拥军，周建红
上海中医药大学脊柱病研究所，上海中医药大学龙华医院，上海 200032

摘要：骨关节炎是临床常见病、多发病，其重要始发因素及病理改变是软骨退变。软骨组织处于低氧微环境中，低氧诱导因子 1α (hypoxia-inducible factor-1α, HIF-1α) 是介导细胞低氧反应的核转录因子，是关节软骨适应低氧环境的一个关键性的调控因子。它对于关节软骨的形成、能量代谢、基质合成等具有重要作用，如果敲除此基因，软骨将不能维持正常形态及功能，导致软骨退变，产生骨关节炎等疾病。中药可以调节 HIF-1α 基因的表达，从而治疗骨关节炎。本文综述了近年来关于 HIF-1α 基因与骨关节炎软骨退变的相关性研究现状。

关键词：骨关节炎；软骨退变；低氧诱导因子 1α；综述

骨关节炎是一种慢性关节退行性疾病，以关节软骨破坏、软骨下骨改变以及滑膜炎为主要特征[1]。多项研究表明，低氧诱导因子 1α (hypoxia-inducible factor-1α, HIF-1α) 与骨关节炎软骨退变的进程有关。本文以“骨关节炎”、“软骨退变”、“HIF-1α”为关键词进行检索，通过检索 PubMed, Springer, 中国知网等文献检索平台，共检索到 1990～2011 年的文献 73 篇，排除研究结果相似者，本文选取其中 42 篇，就二者之间的相关性进行综述。

1 软骨退变的影响因素

造成软骨退变的因素是多方面的，HIF-1α 等基因的表达、异常的机械压力等因素都可能影响软骨的正常形态和功能[2, 6]。

1.1 基因表达 已发现多种基因与骨关节炎有关，包括编码细胞外基质蛋白的基因，一些转录因子和生长因子，如 HIF-1α, 白细胞介素 1(interleukin-1, IL-1), IL-6 及其肿瘤坏死因子 α (tumor necrosis factor α, TNF-α)

基金项目：国家重点基础研究发展计划 (973 计划) 资助项目 (No. 2010CB504000); 国家自然科学基金重点资助项目 (No. 30930011); 国家自然科学基金资助项目 (No. 30973760, 30801523); 上海市高校创新团队计划资助项目 (No. 09JCYG20-6); 上海市曙光学者跟踪计划资助项目 (No. 10GG20); 上海市科学技术委员会 2010 年度非政府间国际科技合作项目 (No. 10410702800)

Correspondence: Chong-jian Zhou, MD. Professor; Tel: 021-54232325; E-mail: zhouchongjian@hotmail.com
factor-a, TNF-a)等。其中, HIF-1α基因的表达与骨关节炎的发展密切相关。在氧分压低的情况下, Lindau肿瘤抑制因子与HIF-1α的氧依赖降解核心区结合,并通过泛素-蛋白酶体途径降解HIF-1α[7,8]；当细胞缺氧时, HIF-1α无法被降解,迅速进入细胞核,与HIF-1β形成二聚体,即HIF-1,启动缺氧相关基因的转录[9]。血管内皮生长因子（vascular endothelial growth factor, VEGF）,促红细胞生成素（erythropoietin, EPO）等,从而使细胞适应低氧状态得以存活[10-12]。Grimmer等[13]研究关节软骨中合成代谢与分解代谢通路的相互关系,将分解的正常和骨关节炎关节软骨细胞培养在含21%或1%氧气的环境中,微粒体前列腺素E合酶1(microsomal prostaglandin E synthase 1, mPGES-1)和HIF-1α免疫组织化学染色结果发现,体外缺氧导致mPGES-1的合成增加,与此同时细胞核中的核转录因子HIF-1α增加；在软骨细胞中,在HIF-1α蛋白水平正常的条件下,mPGES-1磷酰激酶1和环氧合酶2的表达增加。使用2-甲氧基苯乙烯后,mPGES-1的合成减少,这与HIF-1α活性降低有关。这些结果表明HIF-1α参与了上调mPGES-1的过程,因此可能在关节炎软骨代谢过程中发挥重要作用。Yudoh等[14]发现,代谢压力、IL-1β和氧压力都可以诱导骨关节炎患者关节软骨细胞中HIF-1α基因的表达,HIF-1αmRNA在退化区域的表达比未退化区域增多,缺乏HIF-1α基因的软骨细胞无论在常氧和缺氧条件下,均不能产生能量和合成基质,并且代谢应激诱导的细胞凋亡加快。

2.1 HIF-1α基因调控的下游因子 大部分哺乳动物细胞具有氧传感系统,通过多种基因的正向调节来控制氧的动态平衡。HIF1α和HIF-2α在维持所有多细胞动物的氧动态平衡中发挥重要作用。缺氧时许多下游的正向调节因子都是被HIF活性化的[30],包括VEGF、EPO、一氧化氮合酶(nitric oxide synthase, NOS)、胰岛素样生长因子结合蛋白3和瘦素等[3]。

2.1.1 VEGF VEGF与骨关节炎密切相关。VEGF可以在骨关节炎软骨中表达,随着骨关节炎的严重程度增强而增多,并且在骨关节炎的进程中受到HIF-1α基因的调控。Tanaka等[31]通过检测受骨关节炎影响的兔额颜关节的背片软骨中VEGF的表达发现,VEGF在软骨中表达,随着机械压力时间的增长,VEGF免疫阳性软骨细胞增加。Murata等[32]认为VEGF参与了骨关节炎的发病机制, HIF-1可以诱导骨关节炎软骨细胞中VEGF的表达。Sato等[33]发现HIF-1α等异质二聚体的转录可以激活VEGF,调节VEGF对组织缺氧的作用。
2.1.2 EPO EPO在骨关节炎形成过程中也是受HIF-1α基因调控的下游因子。De Spiegelaere等[24]认为在缺氧条件下，EPO受HIF (HIF-1α和HIF-2α) 活动的调节，故此对生长中的软骨或周围组织的EPO的定量研究。结果表明，EPO可能是软骨组织中生存的一个因子或者是由生长的软骨组织中的一个有分裂原。

2.2 调控HIF-1α基因作用的上游因子 IL-β、TNF-α、活性氧和细菌的脂糖等，都是可调节HIF-1α基因作用的上游因子。

2.2.1 IL-1β IL-1β可以诱导HIF-1α mRNA的产生，可能对退行性骨关节炎疾病的软骨细胞代谢有复杂的调控机制[16,25]。Yudoh等[14]发现，IL-1β可以增加体外培养的软骨细胞中的HIF-1α mRNA和蛋白的表达。Zhu等[36]发现，IL-1β可以刺激关节软骨中的HIF-1α表达。

2.2.2 TNF-α TNF-α等许多炎症介质诱导HIF-1α。研究发现，TNF-α可以诱导HIF-1α的积累[27]。Coimbra等[25]在低氧条件下培养骨关节炎和正常软骨细胞16 h，发现HIF-1α表达稳定和(或)增加。在高氧条件下用TNF-α治疗关节软骨细胞导致HIF-1α蛋白水平增加。关节软骨中的HIF-1α在低氧时或用TNF-α处理后可以被进一步诱导或稳定，TNF-α调节HIF-1α水平可能与关节退行性疾病软骨代谢有重要关系。

以上研究提示，骨关节炎时，软骨处于低氧、机械压力和局部炎症的环境中，HIF-1α表达增高以调节软骨细胞的活性和代谢。通过自分泌或旁分泌方式，增加VEGF、EPO等下游因子的表达。

3 HIF-1α基因与骨关节炎软骨退变关系

3.1 HIF-1α基因在骨中的位置 在胚胎期生长板，HIF-1α主要分布于其内层[38]。在正常成年生长板，HIF-1α基因位于关节软骨和软骨的软骨细胞[29]。Schipani等[34]在体外建立了骨-软骨模型，模拟生理状态时软骨内的氧浓度梯度。结果发现，从软骨表层至深层，随着氧浓度的降低，HIF-1α逐渐从细胞浆转入细胞核内；去除表层软骨，中、下层软骨氧浓度升高，HIF-1α从核内转出；特异性敲除HIF-1α基因后，软骨中部低氧区域细胞死亡增多。

HIF-1α作为转录因子，低氧可转入核内促进一系列低氧适应基因的表达，维持关节软骨的低氧稳定。Kim等[20]通过制作未成熟股骨头的急性缺血性损伤模型，发现损伤可以引起骨髓、软骨细胞的严重缺氧和细胞死亡，此时在软骨表层存活的软骨细胞中，HIF-1α表达显著增加。

3.2 HIF-1α基因在缺氧软骨细胞中的表达 HIF-1α基因的表达可能影响缺氧条件下关节和生长板软骨细胞的能量产生、软骨细胞生存和软骨基质合成[31]。HIF-1α是介导低氧反应的主要亚单位，是使细胞适应组织缺氧的一个关键性的糖皮质激素。关节软骨依赖HIF-1α基因使软骨细胞适应低氧状态而存活。在缺氧条件下，HIF-1α表达稳定并转移到细胞核，在那里调整基因转录[24]。Coimbra等[25]发现，HIF-1α在缺氧的关节软骨细胞中表达升高。Genin等[32]发现，在缺氧的生长板中，转录因子HIF-1α增加。如果特异性敲除HIF-1α基因，关节软骨则不能维持正常代谢，会导致软骨细胞凋亡，产生骨关节炎等关节疾病。

3.3 HIF-1α mRNA在骨关节炎软骨中的表达 培养在常氧条件下的软骨细胞骨关节炎软骨细胞中都有HIF-1α mRNA 和蛋白的表达[35]，但骨关节炎关节软骨中的HIF-1α蛋白表达明显高于正常关节软骨[15]；在同一骨关节炎关节软骨中，损伤区域的HIF-1α mRNA表达高于未受损区域[14]。

3.4 HIF-1α基因对骨关节炎软骨的重要作用 HIF-1α基因是细胞适应低氧刺激的主要调节器[34]，它在维持骨关节炎软骨细胞的活性，调节软骨细胞的软骨形成，能量代谢，基质合成，保持软骨细胞的完整性等方面具有重要作用。

3.4.1 软骨形成 HIF-1α能促进软骨细胞在低氧微环境中的生存与分化，是体内软骨形成所必须的[35]。Malladi等[34]发现，定向删除脂肪醇产生成熟软骨细胞中的HIF-1α可以显著抑制软骨形成路径，显示了HIF-1α在软骨形成中的重要作用。

3.4.2 能量代谢和基质合成 Yudoh等[14]发现，在酸性和缺氧条件，缺乏HIF-1α的骨关节炎软骨细胞不能维持能量产生和软骨基质生长，且体外分析应激诱导凋亡加快。因此，骨关节炎软骨中HIF-1α的表达与关节软骨退变的进程密切相关。HIF-1α在维持骨关节炎关节软骨的软骨细胞生存能力方面有重要作用。正常软骨和骨关节炎软骨都存在HIF-1α基因和它的靶基因，在骨关节炎软骨中，HIF-1α在活性软骨细胞的数目随着骨关节炎严重程度增加而增多。因此，软骨细胞可能依靠HIF-1α基序的适应功能来保持ATP水平，并维持骨关节炎过程中的基质合成[15]。

3.4.3 缺氧软骨完整性 在骨关节炎的发展进程，HIF-1α对维持软骨细胞的生存能力发挥了重要作用，并对软骨的完整性具有良好的保护作用。HIF-1α的活性下降会导致软骨的损伤[37,38]。HIF-1α可以维持软骨的正常形态和功能。Kanichai
等[36]评价HIF-1α在低氧条件下对软骨形成的作用，结果发现暴露于HIF-1α的细胞，软骨的形成加速，HIF-1α基因可以促使低氧环境下软骨细胞的形成。

4 HIF-1α基因表达的中药调节

中药可以通过降低关节软骨中HIF-1α基因的表达，发挥对骨关节炎的治疗作用。控制HIF-1α的表达可以作为治疗骨关节炎的一个有效的方法[46]。陈朝燕等[41]的研究显示，与对照组相比，骨关节炎模型组HIF-1αmRNA显著增加（P=0.035），但阳和汤治疗组与骨关节炎模型组HIF-1αmRNA表达水平降低（P=0.039），证明阳和汤可以调节HIF-1αmRNA的表达。韩清民等[42]发现，HIF-1α基因在肾虚型骨关节炎关节软骨中表达升高，应用补肾中药治疗可以下调HIF-1α基因的表达。

5 小结

骨关节炎是在力学因素和生物学因素的共同作用下，软骨组织正常分解和合成代谢偶联失衡，导致软骨基质降解、软骨细胞死亡、关节软骨组织破坏的一种慢性肌肉骨骼系统疾病。HIF-1α基因对于维持软骨细胞的存活和功能具有重要的作用，与骨关节炎的发生密切相关。中药可以通过调节HIF-1α基因的表达治疗骨关节炎。

6 利益冲突

本文作者声明不存在任何与本稿件相关的利益冲突。

REFERENCES


7 Huang LE, Gu J, Schau M, Bunn HF. Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A. 1998; 95(14): 7987-7992.

8 Salcedo S, Caro J. Hypoxia-inducible factor 1α (HIF-1α) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem. 1997; 272(36): 22642-22647.


33 Genin O, Hasdai A, Shinder D, Pines M. Hypoxia, hypoxia-inducible factor-1α (HIF-1α) and heat-shock proteins in tibial dyschondroplasia. Poult Sci. 2008; 87 (8): 1556-1564.


40 Duval E, Leclercq S, Ellisalde JM, Demoor M, Galéa P, Boumédienne K. Hypoxia-inducible factor 1α inhibits the fibroblast-like markers type I and type III collagen during hypoxia-induced chondrocyte redifferentiation: hypoxia not only induces type II collagen and aggrecan, but it also inhibits type I and type III collagen in the hypoxia-inducible factor 1α-dependent redifferentiation of chondrocytes. Arthritis Rheum. 2009; 60 (10): 3038-3048.

41 Chen CW, Chen YQ. Experiment research on the influence...
The relationship between hypoxia-inducible factor-1α and cartilage degeneration in osteoarthritis: a review

Fang-fang Dong, Yong-jun Wang, Chong-jian Zhou
Institute of Spine Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China

ABSTRACT: Osteoarthritis is one of the most common diseases seen in clinical practice. Cartilage survives in the hypoxic microenvironment. Hypoxia-inducible factor-1α (HIF-1α) is a key nuclear transcription factor which mediates the hypoxic response of cells. HIF-1α gene is an important regulator for the adaptation of articular cartilage to the hypoxic environment. It is important for formation of articular cartilage, energy metabolism and matrix synthesis. If the HIF-1α gene is knocked out, the cartilage can not maintain their normal morphology and function, which may lead to cartilage degeneration, and result in diseases such as osteoarthritis. Chinese herbal medicines can regulate the expression of HIF-1α gene and supply a therapy method for osteoarthritis. In this paper, the authors review the situation of the correlation between HIF-1α and osteoarthritis cartilage degeneration examined in recent years.

KEYWORDS: osteoarthritis; cartilage degeneration; hypoxia-inducible factor-1α; review