Updated Saturday, July 21, 2018
 Journal Tools
RSS Feed
Sample Copy
Submit a Manuscript
Contact Us
Thanking Peer Reviewers
 Language Polishing
Journal of Integrative Medicine: Volume 15, 2017   Issue 4,  Pages: 255–264

DOI: 10.1016/S2095-4964(17)60346-7
Homeopathic potencies of Arnica montana L. change gene expression in a Tamm-Horsfall protein-1 cell line in vitro model: the role of ethanol as a possible confounder and statistical bias
1. Salvatore Chirumbolo (Department of Neurological and Movement Sciences, University of Verona, 37134 Verona, Italy )
2. Geir Bj?rklund (Council for Nutritional and Environmental Medicine, 8610 Mo i Rana, Norway )


Marzotto et al. showed that homeopathic preparations of Arnica montana L. acted directly on gene expression of Tamm-Horsfall protein-1 (THP-1) monocyte/macrophage cell lines activated with phorbol12-myristate13-acetate and interleukin-4 (IL-4). A. montana homeopathic dilutions are used in complementary and alternative medicine to treat inflammation disorders and post-traumatic events as well as for wound repair. The French Pharmacopoeia of these remedies uses 0.3% ethanol in each centesimal dilution. In this paper, we discuss how ethanol-containing A. montana homeopathic centesimal dilutions can change gene expression in IL-4-treated monocyte/macrophage THP-1. We assessed the role of ethanol in the Arnica homeopathic dilutions containing this alcohol by investigating its action on gene expression of THP-1 cell. Evidence would strongly suggest that the presence of ethanol in these remedies might play a fundamental role in the dilutions ability to affect gene expression, particularly for doses from 5c to 15c. Where, rather than playing a major role in the mesoscopic structure of water, the ethanol might have a chemical-physical role in the induction of THP-1 gene expression, apoptosis, and deoxyribonucleic acid function. This evidence generates a debate about the suggestion that the use of a binary-mixed solvent in homeopathic chemistry, used by Hahnemann since 1810, may be fundamental to explain the activity of homeopathy on cell models.

Keywords: Arnica; homeopathy; bias; statistics; gene expression; Tamm-Horsfall protein; cell line

Welcome to JIM! You are the number 1553 reader of this article!
Download Article:
[Full Text]      [PDF]      [Previous]      [Next]      [This Issue]
Please cite this article as:
Chirumbolo S, Bj?rklund G. Homeopathic potencies of Arnica montana L. change gene expression in a Tamm-Horsfall protein-1 cell line in vitro model: the role of ethanol as a possible confounder and statistical bias. J Integr Med. 2017; 15(4): 255–264.
1Marzotto M, Bonafini C, Olioso D, Baruzzi A, Bettinetti L, Di Leva F, Galbiati E, Bellavite P. Arnica montana stimulates extracellular matrix gene expression in a macrophage cell line differentiated to wound-healing phenotype[J].PLoS One, 2016, 11(11): e0166340.  
2Endrullat C, Gl?kler J, Franke P, Frohme M. Standardization and quality management in next-generation sequencing[J].Appl Transl Genom, 2016, 10: 2–9.  
3Staneva J, Denkova P, Todorova M, Evstatieva L. Quantitative analysis of sesquiterpene lactones in extract of Arnica montana L. by 1H NMR spectroscopy[J].J Pharm Biomed Anal, 2011, 54(1): 94–99.  
4Merfort I. Perspectives on sesquiterpene lactones in inflammation and cancer[J].Curr Drug Targets, 2011, 12(11): 1560–1573.  
5Mary-Huard T, Daudin JJ, Baccini M, Biggeri A, Bar-Hen A. Biases induced by pooling samples in microarray experiments[J].Bioinformatics, 2007, 23(13): i313–i318.  
6Fasold M, Binder H. Variation of RNA quality and quantity are major sources of batch effects in microarray expression data[J].Microarrays (Basel), 2014, 3(4): 322–339.  
7Zimmerman DW, Zumbo BD. Relative power of the Wilcoxon test, the Friedman test, and repeated-measures ANOVA on ranks[J].J Exper Educ, 1993, 62(1): 75–86.  
8Bürkner PC, Doebler P, Holling H. Optimal design of the Wilcoxon-Mann-Whitney test[J].Biom J, 2017, 59(1): 25–40.  
9Zimmerman DW, Zumbo BD. The relative power of the Wilcoxon-Mann-Whitney test and Student’s t test under simple bounded transformations[J].J Gen Psychol, 1990, 117(4): 425–436.  
10Olioso D, Marzotto M, Bonafini C, Brizzi M, Bellavite P. Arnica montana effects on gene expression in a human macrophage cell line. Evaluation by quantitative real-time PCR[J].Homeopathy, 2016, 105(2): 131–147.  
11Chirumbolo S, Bj?rklund G. Commentary: Arnica montana effects on gene expression in a human macrophage cell line: evaluation by quantitative real-time PCR[J].Front Immunol, 2016, 7: 280.  
12Olioso D, Marzotto M, Bonafini C, Brizzi M, Bellavite P. Response to commentary: Arnica montana effects on gene expression in a human macrophage cell line. Evaluation by quantitative real-time PCR[J].Front Immunol, 2016, 7: 320.  
13Parekh S, Ziegenhain C, Vieth B, Enard W, Hellmann I. The impact of amplification on differential expression analyses by RNA-seq[J].Sci Rep, 2016, 6: 25533.  
14Rajkumar AP, Qvist P, Lazarus R, Lescai F, Ju J, Nyegaard M, Mors O, B?rglum AD, Li Q, Christensen JH. Experimental validation of methods for differential gene expression analysis and sample pooling in RNA-seq[J].BMC Genomics, 2015, 16: 548.  
15Wang C, Gong B, Bushel PR, Thierry-Mieg J, Thierry-Mieg D, Xu J, Fang H, Hong H, Shen J, Su Z, Meehan J, Li X, Yang L, Li H, ?abaj PP, Kreil DP, Megherbi D, Gaj S, Caiment F, van Delft J, Kleinjans J, Scherer A, Devanarayan V, Wang J, Yang Y, Qian HR, Lancashire LJ, Bessarabova M, Nikolsky Y, Furlanello C, Chierici M, Albanese D, Jurman G, Riccadonna S, Filosi M, Visintainer R, Zhang KK, Li J, Hsieh JH, Svoboda DL, Fuscoe JC, Deng Y, Shi L, Paules RS, Auerbach SS, Tong W. The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance[J].Nat Biotechnol, 2014, 32(9): 926–932.  
16Yuan F, Lei Y, Wang Q, Esberg LB, Huang Z, Scott GI, Li X, Ren J. Moderate ethanol administration accentuates cardiomyocyte contractile dysfunction and mitochondrial injury in high-fat diet-induced obesity[J].Toxicol Lett, 2015, 233(3): 267–277.  
17Cahill A, Stabley GJ, Wang X, Hoek JB. Chronic ethanol consumption causes alterations in the structural integrity of mitochondrial DNA in aged rats[J].Hepatology, 1999, 30(4): 881–888.  
18Bolnick JM, Karana R, Chiang PJ, Kilburn BA, Romero R, Diamond MP, Smith SM, Armant DR. Apoptosis of alcohol-exposed human placental cytotrophoblast cells is downstream of intracellular calcium signaling[J].Alcohol Clin Exp Res, 2014, 38(6): 1646–1653.  
19Guan Z, Lui CY, Morkin E, Bahl JJ. Oxidative stress and apoptosis in cardiomyocyte induced by high-dose alcohol[J].J Cardiovasc Pharmacol, 2004, 44(6): 696–702.  
20Zhang J, He S, Zhou W, Yuan B. Ethanol induces oxidative stress and apoptosis in human umbilical vein endothelial cells[J].Int J Clin Exp Med, 2016, 9(2): 4125–4130.  
21Rehman S, Chandel N, Salhan D, Rai P, Sharma B, Singh T, Husain M, Malhotra A, Singhal PC. Ethanol and vitamin D receptor in T cell apoptosis[J].J Neuroimmune Pharmacol, 2013, 8(1): 251–261.  
22Pourhoseingholi MA, Baghestani AR, Vahedi M. How to control confounding effects by statistical analysis[J].Gastroenterol Hepatol Bed Bench, 2012, 5(2): 79–83.  
23Chiba Y. The sign of the unmeasured confounding bias under various standard populations[J].Biom J, 2009, 51(4): 670–676.  
24Süt N. Study designs in medicine[J].Balkan Med J, 2014, 31(4): 273–277.  
25Ishida N, Inoue T, Miyahara M, Higashitani K. Nanbubbles in a hydrophobic surface in water observed by tapping-mode atomic force microscopy[J].Langmuir, 2000, 16(16): 6377–6380.  
26Ruckenstein E. Nanodispersions of bubbles and oil drops in water[J].Colloids Surf A Physicochem Eng Asp, 2013, 423: 112–114.  
27Thorpe SA, Stubbs AR, Hall AJ, Turner J. Wave-produced bubbles observed by side-scan sonar[J].Nature, 1982, 296: 636–638.  
28Jin F, Ye J, Hong L, Lam H, Wu C. Slow relaxation mode in mixtures of water and organic molecules: supramolecular structures or nanobubbles? J Phys Chem B. 2007; 111(9): 2255–2261.
29H?bich A, Ducker W, Dunstan DE, Zhang X. Do stable nanobubbles exist in mixtures of organic solvents and water? J Phys Chem B. 2010; 114(20): 6962–6967.
30An H, Liu G, Atkin R, Craig VSJ. Surface nanobubbles in nonaqueous media: looking for nanobubbles in DMSO, formamide, propylene carbonate, ethylammniumnitrate and propylammonium nitrate[J].ACS Nano, 2015, 9: 7596–7607.  
31Uchida T, Oshita S, Ohmori M, Tsuno T, Soejima K, Shinozaki S, Take Y, Mitsuda K. Transmission electron microscopic observations of nanobubbles and their capture of impurities in wastewater[J].Nanoscale Res Lett, 2011, 6(1): 295.  
32Craig VSJ. Viewpoint: surface nanobubbles or Knudsen bubbles? Physics. 2011; 4: 70.
33Liu S, Oshita S, Makino Y, Wang Q, Kawagoe Y, Uchida T. Oxidative capacity of nanobubbles and its effect on seed germination[J].ACS Sustainable Chem Eng, 2016, 4(3): 1347–1353.  
34Uchida T, Liu S, Enari M, Oshita S, Yamazaki K, Gohara K. Effect of NaCl on the lifetime of micro- and nano-bubbles[J].Nanomaterials, 2016, 6: 31.  
35Attard P. The stability of nanobubbles[J].Eur Phys J Special Topics, 2013, 2013: 1–22.  
36Chan CU, Ohl CD. Total internal reflection fluorescence microscopy for the study of nanobubble dynamics[J].Phys Rev Lett, 2012, 109: 174501.  
37Sedlák M, Rak D. Large-scale inhomogeneities in solutions of low molar mass compounds and mixtures of liquids: supramolecular structures or nanobubbles? J Phys Chem B. 2013; 117(8): 2495–2504.
38Simonsen AC, Hansen PL, Kl?sgen B. Nanobubbles give evidence of incomplete wetting at a hydrophobic interface[J].J Colloid Interface Sci, 2004, 273(1): 291–299.  
39Yang S, Dammer SM, Bremond N, Zandvliet HJ, Kooij ES, Lohse D. Characterization of nanobubbles on hydrophobic surfaces in water[J].Langmuir, 2007, 23(13): 7072–7077.  
40Sedlák M, Rak D. On the origin of mesoscale structures in aqueous solutions of tertiary butyl alcohol: the mystery resolved[J].J Phys Chem B, 2014, 118(10): 2726–2737.  
41Chikramane PS, Kalita D, Suresh AK, Kane SG, Bellare JR. Why extreme dilutions reach non-zero asymptotes: a nanoparticulate hypothesis based on froth flotation[J].Langmuir, 2012, 28(45): 15864–15875.  
42Chirumbolo S. Bias in homeopathy: technical note[J].Malays J Med Biol Res, 2015, 2(3): 191–199.  
43Pawitan Y, Murthy KR, Michiels S, Ploner A. Bias in the estimation of false discovery rate in microarray studies[J].Bioinformatics, 2005, 21(20): 3865–3872.  
44Liao JG, Lin Y, Selvanayagam ZE, Shih WJ. A mixture model for estimating the local false discovery rate in DNA microarray analysis[J].Bioinformatics, 2004, 20(16): 2694–2701.  
45Mayo MS, Gajewski BJ, Morris JS. Some statistical issues in microarray gene expression data[J].Radiat Res, 2006, 165(6): 745–748.  
 Home | Current Issue | Past Issues | SearchRSS
Copyright © 2013-2018 by JIM Editorial Office. All rights reserved. ISSN 2095-4964; CN 31-2083/R. 沪ICP备110264号