Updated Tuesday, October 24, 2017
 Journal Tools
RSS Feed
Sample Copy
Submit a Manuscript
Contact Us
Thanking Peer Reviewers
 Language Polishing
Journal of Integrative Medicine: Volume 15, 2017   Issue 5

DOI: 10.1016/S2095-4964(17)60351-0
The indeterminable resilience of the fascial system
1. Bruno Bordoni (Department of Cardiology, Institute of Hospitalization and Care with Scientific Address, Foundation Don Carlo Gnocchi IRCCS, Milan 20100, Italy )
2. Fabiola Marelli (Department of Fascial Osteopathic Research: FORe, School of Osteopathic Centre for Research and Studies, CRESO, Gorla Minore (VA) 21055, Italy )
3. Bruno Morabito (Department of Fascial Osteopathic Research: FORe, School of Osteopathic Centre for Research and Studies, CRESO, Gorla Minore (VA) 21055, Italy )
4. Beatrice Sacconi (Department of Radiological, Oncological and Anatomopathological Sciences, Sapienza University of Rome, Rome 00185, Italy )
ABSTRACT The most recent information on fascial tissue indicates that there are not fascial layers, but polyhedral microvacuoles of connective tissue, which connect the body systems and, by hosting specialized cells, permit several functions, such as motor, nervous, vascular and visceral. These microvacuoles (a repetition of polyhedral units of connective fibrils) under internal or external tension change shape and can manage the movement variations, regulating different body functions and ensuring the maintenance of efficiency of the body systems. Their plasticity is based on perfect functional chaos: it is not possible to determine the motion vectors of the different fibrils, which differ in behavior and orientation; this strategy confers to the fascial continuum the maximum level of adaptability in response to the changing internal and external conditions of the cell. The present commentary deals with this concept, providing clinical examples of different disease patterns, providing contrary examples in which this adaptability does not occur, and lastly suggesting considerations for the approach to manipulative therapy of the fascial tissue. The fascial continuum is like a flock of birds flying together without a predetermined logic and maintaining their individuality at the same time. Keywords: fascia; osteopathic; manual therapy; fibroblast; fascial continuum
Welcome to JIM! You are the number 534 reader of this article!
Download Article:
[Full Text]      [PDF]      [Previous]      [Next]      [This Issue]
Please cite this article as:
Bordoni B, Marelli F, Morabito B, Sacconi B. The indeterminable resilience of the fascial system. J Integr Med. 2017 June; 2017; 15(5): 337–343.
1Bordon B, Marelli F. The fascial system and exercise intolerance in patients with chronic heart failure: hypothesis of osteopathic treatment. J Multidiscip Healthc. 2015: 8489–8494.
2Bordoni B, Zanier E. Understanding fibroblasts in order to comprehend the osteopathic treatment of the fascia[J].Evid Based Complement Alternat Med, 2015, 2015: 860934.  
3Schleip R, Findley TW, Chaitow L, Huijing PA. Fascia: the tensional network of the human body. London: Churchill Livingstone. 2012.
4Bordoni B, Bordoni G. Reflections on osteopathic fascia treatment in the peripheral nervous system[J].J Pain Res, 2015, 8: 735–740.  
5Guimberteau JC, Armstrong C. Architecture of human living fascia—the extracellular matrix and cells revealed through endoscopy. Edinburgh: Handspring Publishing. 2015.
6Dawidowicz J, Szotek S, Matysiak N, Mielańczyk ?, Maksymowicz K. Electron microscopy of human fascia lata: focus on telocytes[J].J Cell Mol Med, 2015, 19(10): 2500–2506.  
7Turvey MT, Fonseca ST. The medium of haptic perception: a tensegrity hypothesis[J].J Mot Behav, 2014, 46(3): 143–187.  
8Guimberteau JC, Delage JP, McGrouther DA, Wong JK. The microvacuolar system: how connective tissue sliding works[J].J Hand Surg Eur Vol, 2010, 35(8): 614–622.  
9Guimberteau JC, Delage JP, Wong J. The role and mechanical behavior of the connective tissue in tendon sliding[J].Chir Main, 2010, 29(3): 155–166.  
10Yamada AK, Verlengia R, Bueno Junior CR. Mechanotransduction pathways in skeletal muscle hypertrophy[J].J Recept Signal Transduct Res, 2012, 32(1): 42–44.  
11Mandelbrot B. Fractal geometry of nature. New York: Henry Holt and Company. 1983.
12Peter AK, Cheng H, Ross RS, Knowlton KU, Chen J. The costamere bridges sarcomeres to the sarcolemma in striated muscle[J].Prog Pediatr Cardiol, 2011, 31(2): 83–88.  
13Feynman RP, Leighton RB, Sands M. The Feynman lectures on physics: quantum mechanics. Mineola: Dover Publications. 2011.
14Holmberg J, Durbeej M. Laminin-211 in skeletal muscle function[J].Cell Adh Migr, 2013, 7(1): 111–121.  
15Mermelstein CS, Andrade LR, Portilho DM, Costa ML. Desmin filaments are stably associated with the outer nuclear surface in chick myoblasts[J].Cell Tissue Res, 2006, 323(2): 351–357.  
16Pancheri FQ, Eng CM, Lieberman DE, Biewener AA, Dorfmann L. A constitutive description of the anisotropic response of the fascia lata[J].J Mech Behav Biomed Mater, 2014, 30: 306–323.  
17Chaudhry H, Max R, Antonio S, Findley T. Mathematical model of fiber orientation in anisotropic fascia layers at large displacements[J].J Bodyw Mov Ther, 2012, 16(2): 158–164.  
18Bordoni B, Zanier E. Clinical and symptomatological reflections: the fascial system[J].J Multidiscip Healthc, 2014, 7: 401–411.  
19Tozzi P. A unifying neuro-fasciagenic model of somatic dysfunction—underlying mechanisms and treatment: part I[J].J Bodyw Mov Ther, 2015, 19(2): 310–326.  
20Stecco A, Stern R, Fantoni I, De Caro R, Stecco C. Fascial disorders: implications for treatment[J].PM R, 2016, 8(2): 161–168.  
21Eklouh-Molinier C, Happillon T, Bouland N, Fichel C, Diébold MD, Angiboust JF, Manfait M, Brassart-Pasco S, Piot O. Investigating the relationship between changes in collagen fiber orientation during skin aging and collagen/water interactions by polarized-FTIR microimaging[J].Analyst, 2015, 140(18): 6260–6268.  
22Sommer G, Schriefl AJ, Andr? M, Sacherer M, Viertler C, Wolinski H, Holzapfel GA. Biomechanical properties and microstructure of human ventricular myocardium[J].Acta Biomater, 2015, 24: 172–192.  
23Poveda F, Gil D, Martí E, Andaluz A, Ballester M, Carreras F. Helical structure of the cardiac ventricular anatomy assessed by diffusion tensor magnetic resonance imaging with multiresolution tractography[J].Rev Esp Cardiol (Engl Ed), 2013, 66(10): 782–790.  
24Zimmerman SD, Karlon WJ, Holmes JW, Omens JH, Covell JW. Structural and mechanical factors influencing infarct scar collagen organization[J].Am J Physiol Heart Circ Physiol, 2000, 278(1): H194–H200.  
25Sun Y, Weber KT. Infarct scar: a dynamic tissue[J].Cardiovasc Res, 2000, 46(2): 250–256.  
26Pagiatakis C, Galaz R, Tardif JC, Mongrain R. A comparison between the principal stress direction and collagen fiber orientation in coronary atherosclerotic plaque fibrous caps[J].Med Biol Eng Comput, 2015, 53(6): 545–555.  
27Sun M, Bloom AB, Zaman MH. Rapid quantification of 3D collagen fiber alignment and fiber intersection correlations with high sensitivity. PLoS One; 10(7): e0131814.
28Ko EJ, Jeon JY, Kim W, Hong JY, Yi YG. Referred symptom from myofascial pain syndrome: One of the most important causes of sensory disturbance in breast cancer patients using taxanes. Eur J Cancer Care (Engl). 2016. Epub ahead of print.
29Langevin HM, Keely P, Mao J, Hodge LM, Schleip R, Deng G, Hinz B, Swartz MA, de Valois BA, Zick S, Findley T. Connecting tissues: how research in fascia biology can impact integrative oncology[J].Cancer Res, 2016, 76(21): 6159–6162.  
30Jones HJ, Girard MJ, White N, Fautsch MP, Morgan JE, Ethier CR, Albon J. Quantitative analysis of three-dimensional fibrillar collagen microstructure within the normal, aged and glaucomatous human optic nerve head. J R Soc Interface. 2015; 12(106). pii: 20150066.
31van Oers RF, Wang H, Bacabac RG. Osteocyte shape and mechanical loading[J].Curr Osteoporos Rep, 2015, 13(2): 61–66.  
32Kerschnitzki M, Wagermaier W, Roschger P, Seto J, Shahar R, Duda GN, Mundlos S, Fratzl P. The organization of the osteocyte network mirrors the extracellular matrix orientation in bone[J].J Struct Biol, 2011, 173(2): 303–311.  
33Coelho NM, McCulloch CA. Contribution of collagen adhesion receptors to tissue fibrosis[J].Cell Tissue Res, 2016, 365(3): 521–538.34 Oxlund BS, ?rtoft G, Brüel A, Danielsen CC, Oxlund H, Uldbjerg N. Cervical collagen and biomechanical strength in non-pregnant women with a history of cervical insufficiency. Reprod Biol Endocrinol. 2010; 8: 92.  
34J?rvinen TA, Józsa L, Kannus P, J?rvinen TL, J?rvinen M. Organization and distribution of intramuscular connective tissue in normal and immobilized skeletal muscles. An immunohistochemical, polarization and scanning electron microscopic study[J].J Muscle Res Cell Motil, 2002, 23(3): 245–254.  
35Bordoni B, Zanier E. Skin, fascias, and scars: symptoms and systemic connections[J].J Multidiscip Healthc, 2013, 7: 11–24.  
36Webster KD, Ng WP, Fletcher DA. Tensional homeostasis in single fibroblasts[J].Biophys J, 2014, 107(1): 146–155.  
37Scarr G. Fascial hierarchies and the relevance of crossed-helical arrangements of collagen to changes in the shape of muscles[J].J Bodyw Mov Ther, 2016, 20(2): 377–387.  
38Bishop JH, Fox JR, Maple R, Loretan C, Badger GJ, Henry SM, Vizzard MA, Langevin HM. Ultrasound evaluation of the combined effects of thoracolumbar fascia injury and movement restriction in a porcine model[J].PLoS One, 2016, 11(1): e0147393.  
39Meltzer KR, Cao TV, Schad JF, King H, Stoll ST, Standley PR. In vitro modeling of repetitive motion injury and myofascial release[J].J Bodyw Mov Ther, 2010, 14(2): 162–171.  
40Cao TV, Hicks MR, Standley PR. In vitro biomechanical strain regulation of fibroblast wound healing[J].J Am Osteopath Assoc, 2013, 113(11): 806–818.  
41Chaudhry H, Bukiet B, Ji Z, Stecco A, Findley TW. Deformations experienced in the human skin, adipose tissue, and fascia in osteopathic manipulative medicine[J].J Am Osteopath Assoc, 2014, 114(10): 780–787.  
42Roman M, Chaudhry H, Bukiet B, Stecco A, Findley TW. Mathematical analysis of the flow of hyaluronic acid around fascia during manual therapy motions[J].J Am Osteopath Assoc, 2013, 113(8): 600–610.  
43Chaudhry H, Schleip R, Ji Z, Bukiet B, Maney M, Findley T. Three-dimensional mathematical model for deformation of human fasciae in manual therapy[J].J Am Osteopath Assoc, 2008, 108(8): 379–390.  
44Gaur P, Chawla A, Verma K, Mukherjee S, Lalvani S, Malhotra R, Mayer C. Characterisation of human diaphragm at high strain rate loading[J].J Mech Behav Biomed Mater, 2016, 60: 603–616.  
 Home | Current Issue | Past Issues | SearchRSS
Copyright © 2013-2018 by JIM Editorial Office. All rights reserved. ISSN 2095-4964; CN 31-2083/R. 沪ICP备110264号