Updated Saturday, December 16, 2017
 Journal Tools
RSS Feed
Sample Copy
Submit a Manuscript
Contact Us
Subscription
Advertising
Thanking Peer Reviewers
 Language Polishing
Journal of Integrative Medicine: Volume 15, 2017   Issue 5,  Pages: 388–397

DOI: 10.1016/S2095-4964(17)60354-6
Research Article
Antioxidant defense system induced by cysteine-stabilized peptide fraction of aqueous extract of Morinda lucida leaf in selected tissues of Plasmodium berghei-infected mice
1. Kayode E. Adewole (Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin 24003, Nigeria )
2. Joseph O. Adebayo (Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin 24003, Nigeria )
ABSTRACT OBJECTIVE: This study evaluated the responses of some antioxidant parameters in selected tissues of Plasmodium berghei-infected mice treated with cysteine-stabilized peptide fraction (CSPF) of aqueous extract of Morinda lucida leaf. METHODS: Fifty-six mice were randomly divided into seven groups. Group A (normal control) was uninfected and received 5% dimethyl sulfoxide (DMSO). Mice in Groups B (negative control), C, D, E and F were inoculated with P. berghei NK65 and were administered with 5% DMSO and 15.63, 31.25, 61.5 and 125 mg/kg body weight of CSPF respectively. Group G animals, were also inoculated with P. berghei NK65, and received 20 mg/kg body weight of chloroquine. The administration lasted for three days, after which malondialdehyde (MDA) concentration and various antioxidant parameters in selected tissues of mice were determined on days 4 and 8 post-inoculation. RESULTS: The results revealed that MDA concentration was significantly increased (P < 0.05) in the tissues of the negative control and chloroquine-treated groups. The increased MDA concentration was reduced by CSPF in a dose-dependent manner, which was significant (P < 0.05) at higher doses. The activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase and the concentration of reduced glutathione were significantly reduced (P < 0.05) in the tissues of the negative control animals compared to the normal controls. This observed reduction in the negative control animals was reverted in a dose-dependent manner in infected animals given CSPF, even to the range of the normal controls at highest dose, as did chloroquine. CONCLUSION: The results suggest that CSPF of M. lucida leaf extract may induce the antioxidant defense system in vivo against Plasmodium species infection. Keywords: Morinda lucida; peptide extract; Plasmodium berghei; antioxidant; oxidative stress
Welcome to JIM! You are the number 379 reader of this article!
Download Article:
[Full Text]      [PDF]      [Previous]      [Next]      [This Issue]
Please cite this article as:
Adewole KE, Adebayo JO. Antioxidant defense system induced by cysteine-stabilized peptide fraction of aqueous extract of Morinda lucida leaf in selected tissues of Plasmodium berghei-infected mice. J Integr Med. 2017; 15(5): 388–397.
References:
1World Health Organization. World malaria report 2015. (2015-12) [2017-01-19]. http://www.who.int/malaria/publications/world-malaria-report-2015/report/en/.
2Guantai E, Chibale K. How can natural products serve as a viable source of lead compounds for the development of new/novel anti-malarials? Malar J. 2011; 10(Suppl 1): S2.
3Guerin PJ, Olliaro P, Nosten F, Druilhe P, Laxminaraya R, Binka F, Kilama WL, Ford N, White NJ. Malaria: current status of control, diagnosis, treatment, and a proposed agenda for research and development[J].Lancet Infec Dis, 2002, 2(9): 564–573.  
4Willcox ML, Bodeker G. Traditional herbal medicines for malaria[J].BMJ, 2004, 329(7475): 1156–1159.  
5Gründemann C, Thell K, Lengen K, Garcia-K?ufer M, Huang YH, Huber R, Craik DJ, Schabbauer1 G, Gruber CW. Cyclotides suppress human T-lymphocyte proliferation by an interleukin 2-dependent mechanism[J].PLoS One, 2013, 8(6): e68016.  
6Sohail M, Kaul A, Raziuddin M, Adak T. Decreased glutathione-S-transferase activity: diagnostic and protective role in vivax malaria[J].Clin Biochem, 2007, 40(5–6): 377–382.  
7Atamna H, Ginsburg H. Origin of reactive oxygen species in erythrocytes infected with Plasmodium falciparum[J].Mol Biochem Parasitol, 1993, 61(2): 231–241.  
8Cabrales P, Zanini GM, Meays D, Frangos JA, Carvalho LJ. Nitric oxide protection against murine cerebral malaria is associated with improved cerebral microcirculatory physiology[J].J Infect Dis, 2011, 203(10): 1454–1463.  
9Percário S, Moreira DR, Gomes BA, Ferreira ME, Gon?alves AC, Laurindo PS, Vilhena TC, Dolabela MF, Green MD. Oxidative stress in malaria[J].Int J Mol Sci, 2012, 13(12): 16346–16372.  
10Koehbach J, Attah AF, Berger A, Hellinger R, Kutchan TM, Carpenter EJ, Rolf M, Sonibare MA, Moody JO, Wong GK, Dessein S, Greger H, Gruber CW. Cyclotide discovery in Gentianales revisited—identification and characterization of cyclic cystine-knot peptides and their phylogenetic distribution in Rubiaceae plants[J].Biopolymers, 2013, 100(5): 438?452.  
11Peters W. Drug resistance in Plasmodium berghei Vinka and Lips[J].Exp Parasitol, 1965, 17(1): 97–102.  
12Carvalho LH, Krettli AU. Antimalarial chemotherapy with natural products and chemically defined molecules[J].Mem Inst Oswaldo Cruz, 1991, 86(Suppl 2): 181–184.  
13Ngaha EO, Akanji MA, Madusolomo MA. Studies on correlation between chloroquine-induced tissue damage and serum changes in rats[J].Experientia, 1982, 45(2): 143–146.  
14Varshney R, Kale RK. Effect of calmodulin antagonist on radiation-induced lipid peroxidation in microsomes[J].Int J Radiat Biol, 1990, 58(5): 733–743.  
15Sinha AK. Colorimetric assay of catalase[J].Anal Biochem, 1972, 47(2): 389–394.  
16Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase[J].J Biol Chem, 1972, 247(10): 3170–3175.  
17Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. Selenium: biochemical role as a component of glutathione peroxidase[J].Science, 1973, 179(4073): 588–590.  
18Carlberg I, Mannervik B. Glutathione reductase[J].Methods Enzymol, 1985, 113: 484–490.  
19Habig WH, Pabst MJ, Jacoby WB. Glutathione-S-transferases. The first enzymatic step in mercapturic acid formation[J].J Biol Chem, 1974, 249(22): 7130–7139.  
20Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione[J].J Lab Clin Med, 1963, 61: 882–888.  
21Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tanenbaum SR. Analysis of nitrate, nitrite and [15N]nitrate in biological fluids[J].Ann Biochem, 1982, 126(1): 131–138.  
22Okeola VO, Adaramoye OA, Nneji CM, Falade CO, Farombi EO, Ademowo OG. Antimalarial and antioxidant activities of methanolic extract of Nigella sativa seeds (black cumin) in mice infected with Plasmodium yoelli nigeriensis[J].Parasitol Res, 2011, 108(6): 1507–1512.  
23Omonkhua AA, Cyril-Olutayo MC, Akanbi OM, Adebayo OA. Antimalarial, hematological, and antioxidant effects of methanolic extract of Terminalia avicennioides in Plasmodium berghei-infected mice[J].Parasitol Res, 2013, 112(10): 3497–3503.  
24Gamboa de Domínguez ND, Charris J, Dominguez J, Monasterios M, Angel J, Rodrigues J. Effects of 5,8-dimethylthieno[2,3-b]quinolone-2-carboxylic acid on the antioxidative defense and lipid membranes in Plasmodium berghei-infected erythrocytes[J].Exp Parasitol, 2015, 155: 26–34.  
25Oluwatosin A, Tolulope A, Ayokulehin K, Patricia O, Aderemi K, Catherine F, Olusegun A. Antimalarial potential of kolaviron, a biflavonoid from Garcinia kola seeds, against Plasmodium berghei infection in Swiss albino mice[J].Asian Pac J Trop Med, 2014, 7(2): 97–104.  
26Postma NS, Mommers EC, Eling WM, Zuidema J. Oxidative stress in malaria: implications for prevention and therapy[J].Pharm World Sci, 1996, 18(4): 121–129.  
27Halliwell B. Biochemistry of oxidative stress[J].Biochem Soc Trans, 2007, 35(Pt 5): 1147–1150.  
28López-Jaén AB, Valls-Bellésa V, Codo?er-Franch P. Antioxidants: a review[J].J Pediatric Biochem, 2013, 3(3): 123–128.  
29Zelko IN, Mariani TJ, Folz RJ. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression[J].Free Radic Biol Med, 2002, 33(3): 337–349.  
30Hunt NH, Stocker R. Oxidative stress and the redox status of malaria-infected erythrocytes[J].Blood Cells, 1990, 16(2–3): 499–526.  
31Raza A, Varshney SK, Khan HM, Malik MA, Mehdi AA, Shukla I. Superoxide dismutase activity in patients of cerebral malaria[J].Asian Pacific J Trop Dis, 2015, 5(Suppl 1): S51–S53.  
32Chelikani P, Fita I, Loewen PC. Diversity of structures and properties among catalases[J].Cell Mol Life Sci, 2004, 61(2): 192–208.  
33vander Jagt DL, Hunsaker LA, Campos NM, Scaletti JV. Localization and characterization of haemoglobin-degrading aspartic proteinases from the malarial parasite Plasmodium falciparum[J].Biochim Biophys Acta, 1992, 1122(3): 256–264.  
34Balogun EA, Zailani AH, Adebayo JO. Augmentation of antioxidant system: contribution to antimalarial activity of Clerodendrum violaceum leaf extract[J].Tang, 2014, 4(4): 26.1–26.9.  
35Areekul S, Boonme Y. Catalase activity in red cell and liver of mice infected with Plasmodium berghei[J].Southeast Asian J Trop Med Public Health, 1986, 17(1): 48–52.  
36Das BS, Nanda NK. Evidence for erythrocyte lipid peroxidation in acute falciparum malaria[J].Trans R Soc Trop Med Hyg, 1999, 93(1): 58–62.  
37Acharya JD, Ghaskadbi SS. Islets and their antioxidant defense[J].Islets, 2010, 2(4): 225–235.  
38Araujo CF, Lacerda MV, Abdalla DS, Lima ES. The role of platelet and plasma markers of antioxidant status and oxidative stress in thrombocytopenia among patients with vivax malaria[J].Mem Inst Oswaldo Cruz, 2008, 103(6): 517–521.  
39Erel O, Vural H, Aksoy N, Aslan G, Ulukanligil M. Oxidative stress of platelets and thrombocytopenia in patients with vivax malaria[J].Clin Biochem, 2001, 34(4): 341–344.  
40Blum J, Fridovich I. Inactivation of glutathione peroxidase by superoxide radical[J].Arch Biochem Biophys, 1985, 240(2): 500–508.  
41Tutic M, Lu XA, Schirmer RH, Werner D. Cloning and sequencing of mammalian glutathione reductase cDNA[J].Eur J Biochem, 1990, 188(3): 523–528.  
42Müller S. Redox and antioxidant systems of the malaria parasite Plasmodium falciparum[J].Mol Microbiol, 2004, 53(5): 1291–1305.  
43Rodrigues JR, Gamboa ND. Effect of dequalinium on the oxidative stress in Plasmodium berghei-infected erythrocytes[J].Parasitol Res, 2009, 104(6): 1491–1496.  
44Salinas AE, Wong MG. Glutathione S-transferases—a review[J].Curr Med Chem, 1999, 6(4): 279–309.  
45Sies H. Glutathione and its role in cellular functions[J].Free Radic Biol Med, 1999, 27(9–10): 916–921.  
46Lüersen K, Walter RD, Müller S. Plasmodium falciparum-infected red blood cells depend on a functional glutathione de novo synthesis attributable to an enhanced loss of glutathione[J].Biochem J, 2000, 346(Pt 2): 545–552.  
47Giustarini D, Rossi R, Milzani A, Dalle-Donne I. Nitrite and nitrate measurement by Griess reagent in human plasma: evaluation of interferences and standardization[J].Methods Enzymol, 2008, 440: 361–380.  
48Kim-Shapiro DB, Gladwin MT. Pitfalls in measuring NO bioavailability using NOx[J].Nitric Oxide, 2015, 44: 1–2.  
49Ehrhardt S, Mockenhaupt FP, Anemana SD, Otchwemah RN, Wichmann D, Cramer JP, Bienzle U, Burchard GD, Brattig NW. High levels of circulating cardiac proteins indicate cardiac impairment in Africa children with severe Plasmodium falciparum malaria[J].Microbes Infect, 2005, 7(11–12): 1204–1210.  
50Anstey NM, Granger DL, Hassanali MY, Mwaikambo ED, Duffy PE, Weinberg JB. Nitric oxide, malaria, and anemia: inverse relationship between nitric oxide production and hemoglobin concentration in asymptomatic, malaria-exposed children[J].Am J Trop Med Hyg, 1999, 61(2): 249–252.  
51Dhangadamajhi G, Mohapatra BN, Kar SK, Ranjit MR. The CCTTT pentanucleotide microsatellite in iNOS promoter influences the clinical outcome in P. falciparum infection[J].Parasitol Res, 2009, 104(6): 1315–1320.  
52Hobbs MR, Udhayakumar V, Levesque MC, Booth J, Roberts JM, Tkachuk AN, Pole A, Coon H, Kariuki S, Nahlen BL, Mwaikambo ED, Lal AL, Granger DL, Anstey NM, Weinberg JB. A new NOS2 promoter polymorphism associated with increased nitric oxide production and protection from severe malaria in Tanzanian and Kenyan children[J].Lancet, 2002, 360(9344): 1468–1475.  
53Rockett KA, Awburn MM, Cowden WB, Clark IA. Killing of Plasmodium falciparum in vitro by nitric oxide derivatives[J].Infect Immun, 1991, 59(9): 3280–3283.  
54Seguin MC1, Klotz FW, Schneider I, Weir JP, Goodbary M, Slayter M, Raney JJ, Aniagolu JU, Green SJ. Induction of nitric oxide synthase protects against malaria in mice exposed to irradiated Plasmodium berghei infected mosquitoes: involvement of interferon gamma and CD8+ T cells[J].J Exp Med, 1994, 180(1): 353–358.  
55Ong PK, Melchior B, Martins YC, Hofer A, Orjuela-Sánchez P, Cabrales P, Zanini GM, Frangos JA, Carvalho LJ. Nitric oxide synthase dysfunction contributes to impaired cerebroarteriolar reactivity in experimental cerebral malaria[J].PLoS Pathog, 2013, 9(6): e1003444.  
56Gramaglia I, Sobolewski P, Meays D, Contreras R, Nolan JP, Frangos JA, van der Heyde HC. Low nitric oxide bioavailability contributes to the genesis of experimental cerebral malaria[J].Nat Med, 2006, 12(12): 1417–1422.  
57Jeney V, Ramos S, Bergman ML, Bechmann I, Tischer J, Ferreira A, Oliveira-Marques V, Janse CJ, Rebelo S, Cardoso S, Soares MP. Control of disease tolerance to malaria by nitric oxide and carbon monoxide[J].Cell Rep, 2014, 8(1): 126–136.  
 Home | Current Issue | Past Issues | SearchRSS
Copyright © 2013-2018 by JIM Editorial Office. All rights reserved. ISSN 2095-4964; CN 31-2083/R. 沪ICP备110264号