Search JIM Advanced Search

Journal of Integrative Medicine ›› 2015, Vol. 13 ›› Issue (5): 289-296.doi: 10.1016/S2095-4964(15)60187-X

• Review • Previous Articles     Next Articles

Autophagy in cerebral ischemia and the effects of traditional Chinese medicine

Xiao-ping Huanga, Huang Dingb, Jin-dong Luc, Ying-hong Tangb, Bing-xiang Dengc, Chang-qing Denga   

  1. a Molecular Pathology Laboratory, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
    b Key Laboratory of Hunan Province for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-cerebral Diseases, Changsha 410208, Hunan Province, China
    c Key Laboratory of Hunan Universities for Cell Biology and Molecular Techniques, Changsha 410208, Hunan Province, China
  • Received:2015-01-25 Accepted:2015-04-14 Online:2015-09-10 Published:2015-09-15

Autophagy is a lysosome-mediated degradation process for non-essential or damaged cellular constituents, playing an important homeostatic role in cell survival, differentiation and development to maintain homeostasis. Autophagy is involved in tumors as well as neurodegenerative, cardiovascular and cerebrovascular diseases. Recently, active compounds from traditional Chinese medicine (TCM) have been found to modulate the levels of autophagy in tumor cells, nerve cells, myocardial cells and endothelial cells. Ischemic stroke is a major cause of neurological disability and places a heavy burden on family and society. Regaining function can significantly reduce dependence and improve the quality of life of stroke survivors. In healthy cells, autophagy plays a key role in adapting to nutritional deprivation and eliminating aggregated proteins, however inappropriate activation of autophagy may lead to cell death in cerebral ischemia. This paper reviews the process and the molecular basis of autophagy, as well as its roles in cerebral ischemia and the roles of TCM in modulating its activity.

Key words: Autophagy, Brain ischemia, Drugs, Chinese herbal, Medicine, Traditional Chinese, Review

[1] Zheng YQ, Liu JX, Li XZ, Xu L, Xu YG . RNA interference-mediated downregulation of Beclin1 attenuates cerebral ischemic injury in rats. Acta Pharmacol Sin, 2009,30(7):919-927
doi: 10.1038/aps.2009.79 pmid: 4006642
[2] Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD, Han F, Fukunaga K, Qin ZH . Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy, 2008,4(6):762-769
doi: 10.4161/auto.6412
[3] Puyal J, Vaslin A, Mottier V, Clarke PG . Postischemic treatment of neonatal cerebral ischemia should target autophagy. Ann Neurol, 2009,66(3):378-389
doi: 10.1002/ana.21714 pmid: 19551849
[4] Kroemer G , Mariño G, Levine B. Autophagy and the integrated stress response. Mol Cell, 2010,40(2):280-293
doi: 10.1016/j.molcel.2010.09.023
[5] Li L, Zhang Q, Tan J, Fang Y, An X, Chen B . Autophagy and hippocampal neuronal injury. Sleep Breath, 2014,18(2):243-249
doi: 10.1007/s11325-013-0930-4 pmid: 24402351
[6] Uchiyama Y, Shibata M, Koike M, Yoshimura K, Sasaki M . Autophagy — physiology and pathophysiology. Histochem Cell Biol, 2008,129(4):407-420
doi: 10.1007/s00418-008-0406-y pmid: 2668654
[7] Wullschleger S, Loewith R, Hall MN . TOR signaling in growth and metabolism. Cell, 2006,124(3):471-484
doi: 10.1016/j.cell.2006.01.016 pmid: 16469695
[8] Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, Guan JL, Oshiro N, Mizushima N . Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell, 2009,20(7):1981-1991
doi: 10.1091/mbc.E08-12-1248 pmid: 2663915
[9] Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, Kundu M, Kim DH . ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell, 2009,20(7):1992-2003
doi: 10.1091/mbc.e08-12-1249
[10] Mercer CA, Kaliappan A, Dennis PB . A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy, 2009,5(5):649-662
doi: 10.4161/auto.5.5.8249
[11] Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X . ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem, 2009,284(18):12297-12305
doi: 10.1074/jbc.M900573200
[12] Kihara A, Noda T, Ishihara N, Ohsumi Y . Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol, 2001,152(3):519-530
doi: 10.1083/jcb.152.3.519
[13] Funderburk SF, Wang QJ, Yue Z . The Beclin 1-VPS34 complex — at the crossroads of autophagy and beyond. Trends Cell Biol, 2010,20(6):355-362
doi: 10.1016/j.tcb.2010.03.002 pmid: 20356743
[14] Yang Z, Klionsky DJ . Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol, 2010,22(2):124-131
doi: 10.1016/ pmid: 20034776
[15] Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH, Jung JU . Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol, 2006,8(7):688-699
doi: 10.1038/ncb1426 pmid: 16799551
[16] Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y, Liang C, Jung JU, Cheng JQ, Mulé JJ, Pledger WJ, Wang HG . Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol, 2007,9(1):1142-1151
doi: 10.1038/ncb1634 pmid: 2254521
[17] Ohsumi Y . Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol, 2001,2(3):211-216
doi: 10.1038/35056522
[18] Geng J, Klionsky DJ . The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep, 2008,9(9):859-864
doi: 10.1038/embor.2008.163
[19] Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T . The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Bio Cell, 2008,19(5):2092-2100
doi: 10.1091/mbc.e07-12-1257
[20] Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, Takao T, Inagaki F, Ohsumi Y . The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem, 2007,282(52):37298-37302
doi: 10.1074/jbc.C700195200 pmid: 17986448
[21] J?ger S, Bucci C, Tanida I, Ueno T, Kominami E, Saftig P, Eskelinen EL . Role for Rab7 in maturation of late autophagic vacuoles. J Cell Sci, 2004,117(Pt 20):4837-4848
[22] Tanaka Y, Guhde G, Suter A, Eskelinen EL, Hartmann D, Lüllmann-Rauch R, Janssen PM, Blanz J, von Figura K, Saftig P . Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature, 2000,406(6798):902-906
doi: 10.1038/35022595 pmid: 202020202020202022020
[23] Mizushima N, Komatsu M . Autophagy: renovation of cells and tissues. Cell, 2011,147(4):728-741
doi: 10.1016/j.cell.2011.10.026 pmid: 22078875
[24] Xu F, Gu JH, Qin ZH . Neuronal autophagy in cerebral ischemia. Neurosci Bull, 2012,28(5):658-666
doi: 10.1007/s12264-012-1268-9
[25] Chen W, Sun Y, Liu K, Sun X . Autophagy: a double-edged sword for neuronal survival after cerebral ischemia. Neural Regen Res, 2014,9(12):1210-1216
doi: 10.4103/1673-5374.135329 pmid: 25206784
[26] Carloni S, Girelli S, Scopa C, Buonocore G, Longini M, Balduini W . Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia. Autophagy, 2010,6(3):366-377
doi: 10.4161/auto.6.3.11261
[27] Carloni S, Buonocore G, Balduini W . Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol Dis, 2008,32(3):329-339
doi: 10.1016/j.nbd.2008.07.022
[28] Buckley KM, Hess DL, Sazonova IY, Periyasamy-Thandavan S, Barrett JR, Kirks R, Grace H, Kondrikova G, Johnson MH, Hess DC, Schoenlein PV, Hoda MN, Hill WD . Rapamycin up-regulation of autophagy reduces infarct size and improves outcomes in both permanent MCAL, and embolic MCAO, murine models of stroke. Exp Transl Stroke Med, 2014,6: 8
doi: 10.1186/2040-7378-6-8
[29] Zhang X, Yan H, Yuan Y, Gao J, Shen Z, Cheng Y, Shen Y, Wang RR, Wang X, Hu WW, Wang G, Chen Z . Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy, 2013,9(9):1321-1333
doi: 10.4161/auto.25132
[30] Li H, Gao A, Feng D, Wang Y, Zhang L, Cui Y, Li B, Wang Z, Chen G . Evaluation of the protective potential of brain microvascular endothelial cell autophagy on blood-brain barrier integrity during experimental cerebral ischemia-reperfusion injury. Transl Stroke Res, 2014,5(5):618-626
doi: 10.1007/s12975-014-0354-x
[31] Wang P, Guan YF, Du H, Zhai QW, Su DF, Miao CY . Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia. Autophagy, 2012,8(1):77-87
doi: 10.4161/auto.8.1.18274
[32] Sheng R, Liu XQ, Zhang LS, Gao B, Han R, Wu YQ, Zhang XY, Qin ZH . Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning. Autophagy, 2012,8(3):310-325
doi: 10.4161/auto.18673 pmid: 22361585
[33] Jiang T, Yu JT, Zhu XC, Zhang QQ, Tan MS, Cao L, Wang HF, Shi JQ, Gao L, Qin H, Zhang YD, Tan L . Ischemic preconditioning provides neuroprotection by induction of AMP-activated protein kinase-dependent autophagy in a rat model of ischemic stroke. Mol Neurobiol, 2015,51(1):220-229
doi: 10.1007/s12035-014-8725-6
[34] Kang C, Avery L . To be or not to be, the level of autophagy is the question: dual roles of autophagy in the survival response to starvation. Autophagy, 2008,4(1):82-84
doi: 10.4161/auto.5154
[35] Shi R, Weng J, Zhao L, Li XM, Gao TM, Kong J . Excessive autophagy contributes to neuron death in cerebral ischemia. CNS Neurosci Ther, 2012,18(3):250-260
doi: 10.1111/j.1755-5949.2012.00295.x pmid: 22449108
[36] Wang ZQ, Yang Y, Lu T, Luo P, Li J, Wu JP, Tang ZZ, Lu QP, Duan QH . Protective effect of autophagy inhibition on ischemia-reperfusion-induced injury of N2a cells. J Huazhong Univ Sci Technolog Med Sci, 2013,33(6):810-816
doi: 10.1007/s11596-013-1203-y pmid: 24337840
[37] Qin AP, Liu CF, Qin YY, Hong LZ, Xu M, Yang L, Liu J, Qin ZH, Zhang HL . Autophagy was activated in injured astrocytes and mildly decreased cell survival following glucose and oxygen deprivation and focal cerebral ischemia. Autophagy, 2010,6(6):738-753
doi: 10.4161/auto.6.6.12573
[38] Xu F, Li J, Ni W, Shen YW, Zhang XP . Peroxisome proliferator-activated receptor-γ agonist 15d-prostaglandin J2 mediates neuronal autophagy after cerebral ischemia-reperfusion injury. PLoS One, 2013,8(1):1-10
[39] Cui D, Wang L, Qi A, Zhou Q, Zhang X, Jiang W . Propofol prevents autophagic cell death following oxygen and glucose deprivation in PC12 cells and cerebral ischemia-reperfusion injury in rats. PLoS One, 2012,7(4):1-17
[40] Zheng Y, Hou J, Liu J, Yao M, Li L, Zhang B, Zhu H, Wang Z . Inhibition of autophagy contributes to melatonin-mediated neuroprotection against transient focal cerebral ischemia in rats. J Pharmacol Sci, 2014,124(3):354-364
doi: 10.1254/jphs.13220FP
[41] Gao L, Jiang T, Guo J, Liu Y, Cui G, Gu L, Su L, Zhang Y . Inhibition of autophagy contributes to ischemic postconditioning-induced neuroprotection against focal cerebral ischemia in rats. PLoS One, 2012,7(9):e46092
[42] Schlag EM, McIntosh MS . Ginsenoside content and variation among and within American ginseng(Panax quinquefolius L.) populations. Phytochemistry, 2006,67(14):1510-1519
doi: 10.1016/j.phytochem.2006.05.028
[43] Lu T, Jiang Y, Zhou Z, Yue X, Wei N, Chen Z, Ma M, Xu G, Liu X . Intranasal ginsenoside Rb1 targets the brain and ameliorates cerebral ischemia/reperfusion injury in rats. Biol Pharm Bull, 2011,34(8):1319-1324
doi: 10.1248/bpb.34.1319
[44] Liu AJ, Wang SH, Hou SY, Lin CJ, Chiu WT, Hsiao SH, Chen TH, Shih CM . Evodiamine induces transient receptor potential vanilloid-1-mediated protective autophagy in U87-MG astrocytes. Evid Based Complement Alternat Med, 2013, 2013: 354840
[45] Qi Z, Yan F, Shi W, Zhang C, Dong W, Zhao Y, Shen J, Ji X, Liu KJ, Luo Y . AKT-related autophagy contributes to the neuroprotective efficacy of hydroxysafflor yellow A against ischemic stroke in rats. Transl Stroke Res, 2014,5(4):501-509
doi: 10.1007/s12975-014-0346-x
[46] Wang PR, Wang JS, Zhang C, Song XF, Tian N, Kong LY . Huang-Lian-Jie-Du-Decotion induced protective autophagy against the injury of cerebral ischemia/reperfusion via MAPK-mTOR signaling pathway. J Ethnopharmacol, 2013,149(1):270-280
doi: 10.1016/j.jep.2013.06.035
[47] Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B . Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell, 2005,122(6):927-939
doi: 10.1016/j.cell.2005.07.002
[48] Yang Y, Gao K, Hu Z, Li W, Davies H, Ling S, Rudd JA, Fang M . Autophagy upregulation and apoptosis downregulation in DAHP and triptolide treated cerebral ischemia. Mediators Inflamm, 2015, 2015: 120198
[49] Wang R, Liu YY, Liu XY, Jia SW, Zhao J, Cui D, Wang L . Resveratrol protects neurons and the myocardium by reducing oxidative stress and ameliorating mitochondria damage in a cerebral ischemia rat model. Cell Physiol Biochem, 2014,34(3):854-864
doi: 10.1159/000366304
[50] Liu L, Fang YQ, Xue ZF, He YP, Fang RM, Li L . Beta-asarone attenuates ischemia-reperfusion-induced autophagy in rat brains via modulating JNK, p-JNK, Bcl-2 and Beclin 1. Eur J Pharmacol, 2012,680(1-3):34-40
doi: 10.1016/j.ejphar.2012.01.016
[51] Mo ZT, Fang YQ, He YP, Zhang S . β-Asarone protects PC12 cells against OGD/R-induced injury via attenuating Beclin-1-dependent autophagy. Acta Pharmacol Sin, 2012,33(6):737-742
doi: 10.1038/aps.2012.35
[52] Huang XP, Tan H, Chen BY, Deng CQ . Astragalus extract alleviates nerve injury after cerebral ischemia by improving energy metabolism and inhibiting apoptosis. Biol Pharm Bull, 2012,35(4):449-454
[53] Chiu BY, Chang CP, Lin JW, Yu JS, Liu WP, Hsu YC, Lin MT . Beneficial effect of astragalosides on stroke condition using PC12 cells under oxygen glucose deprivation and reperfusion. Cell Mol Neurobiol, 2014,34(6):825-837
doi: 10.1007/s10571-014-0059-4
[54] Zheng YQ, Liu JX, Xu L, Yao MJ, Song WT . Study on effect of weinaokang and bilobalide on autophagy and neurogenesis induced by focal cerebral ischemia reperfusion. Zhongguo Zhong Yao Za Zhi, 2013,38(13):2182-2186
[55] Liu HQ, Wang Y, Guo LZ, Huang HC, Zhong RL, Xia Z . Research of Xijiao Dihuang Decoction on expression of autophagy related protein Atg-5 and Beclin-1 in rats with cerebral ischemia. Nanjing Zhong Yi Yao Da Xue Xue Bao, 2014,30(1):61-64
[56] Tyagi N, Qipshidze N, Munjal C, Vacek JC, Metreveli N, Givvimani S, Tyagi SC . Tetrahydrocurcumin ameliorates homocysteinylated cytochrome-c mediated autophagy in hyperhomocysteinemia mice after cerebral ischemia. J Mol Neurosci, 2012,47(1):128-138
doi: 10.1007/s12031-011-9695-z
[57] Guo Z, Cao G, Yang H, Zhou H, Li L, Cao Z, Yu B, Kou J . A combination of four active compounds alleviates cerebral ischemia-reperfusion injury in correlation with inhibition of autophagy and modulation of AMPK/mTOR and JNK pathways. J Neurosci Res, 2014,92(10):1295-1306
doi: 10.1002/jnr.23400
[1] Tara Rajendran. Addressing the need for personalizing music therapy in integrative oncology. Journal of Integrative Medicine, 2022, 20(4): 281-283.
[2] Wan-jun Guo, Yi Wang, Yu Deng, Lin-yan Cheng, Xin Liu, Ruo-fan Xi, Sheng-jie Zhu, Xin-yi Feng, Liang Hua, Kan Ze, Jian-yong Zhu, Dong-jie Guo, Fu-lun Li. Therapeutic effects of the extract of Sancao Formula, a Chinese herbal compound, on imiquimod-induced psoriasis via cysteine-rich protein 61. Journal of Integrative Medicine, 2022, 20(4): 376-384.
[3] Cai-lian Fana, Wan-jun Caib, Meng-nan Ye, Miao Chen, Yi Dai. Qili Qiangxin, a compound herbal medicine formula, alleviates hypoxia-reoxygenation-induced apoptotic and autophagic cell death via suppression of ROS/AMPK/mTOR pathway in vitro. Journal of Integrative Medicine, 2022, 20(4): 365-375.
[4] Shang-jin Song, Xuan Liu, Qing Ji, Da-zhi Sun, Li-juan Xiu, Jing-yu Xu, Xiao-qiang Yue. Ziyin Huatan Recipe, a Chinese herbal compound, inhibits migration and invasion of gastric cancer by upregulating RUNX3 expression. Journal of Integrative Medicine, 2022, 20(4): 355-364.
[5] Vibha Malhotra, Joanna Harnett, Erica McIntyre, Amie Steel, Keith Wong, Bandana Saini. To “tell or not to tell”—Exploring disclosure about medicine use by people living with sleep disorders. Journal of Integrative Medicine, 2022, 20(4): 338-347.
[6] Maryam Azimi, Hanieh Niayesh, Mahboobeh Raeiszadeh, Sedigheh Khodabandeh-shahraki. Efficacy of the herbal formula of Foeniculum vulgare and Rosa damascena on elderly patients with functional constipation: A double-blind randomized controlled tria. Journal of Integrative Medicine, 2022, 20(3): 230-236.
[7] Marisa Casal. Improving the health and treatment success rates of in vitro fertilization patients with traditional chinese medicine: need for more robust evidence and innovative approaches. Journal of Integrative Medicine, 2022, 20(3): 187-192.
[8] Ning Guo, Fei Wu, Mei Wu, Yuan Wang, Qing Lang, Xiao Lin, Yi Feng. Progress in the design and quality control of placeboes for clinical trials of traditional Chinese medicine . Journal of Integrative Medicine, 2022, 20(3): 204-212.
[9] Tareq A. Wani, Zahoor A. Kaloo, Nisar A. Dangroo. Aconitum heterophyllum Wall. ex Royle: A critically endangered medicinal herb with rich potential for use in medicine. Journal of Integrative Medicine, 2022, 20(2): 104-113.
[10] Mohammad Fazil, Sadia Nikhat. Why the “sugars” in traditional Unani formulations are a pivotal component: A viewpoint perspective. Journal of Integrative Medicine, 2022, 20(2): 91-95.
[11] Yan-jun Lin, Kun-li Jiao, Bo Liu, Lu Fang, Shu Meng. Antiplatelet and myocardial protective effect of shexiang tongxin dropping pill in patients undergoing percutaneous coronary intervention: A randomized controlled trial. Journal of Integrative Medicine, 2022, 20(2): 126-134.
[12] Deng-chao Wang, Miao Yu, Wen-xian Xie, Li-yan Huang, Jian Wei, Yue-hua Lei. Meta-analysis on the effect of combining Lianhua Qingwen with Western medicine to treat coronavirus disease 2019. Journal of Integrative Medicine, 2022, 20(1): 26-33.
[13] Mahlagha Dehghan, Alireza Ghanbari, Fatemeh Ghaedi Heidari, Parvin Mangalian, Mohammad Ali Zakerid. Use of complementary and alternative medicine in general population during COVID-19 outbreak: A survey in Iran. Journal of Integrative Medicine, 2022, 20(1): 45-51.
[14] Jose Antonio Castilla-Jimena, Isabel Ruiz-Pérez, Jesús Henares-Montiel. Impact of socioeconomic and health-related factors on consumption of homeopathic and natural remedies in Spain in 2006, 2011 and 2017. Journal of Integrative Medicine, 2022, 20(1): 52-56.
[15] Jun-peng Yao, Li-ping Chen, Xian-jun Xiao, Ting-hui Hou, Si-yuan Zhou, Ming-min Xu, Kai Wang, Yu-jun Hou, Lin Zhang, Ying Li. Effectiveness and safety of acupuncture for treating functional constipation: An overview of systematic reviews. Journal of Integrative Medicine, 2022, 20(1): 13-25.
Full text



[1] Wei-xiong Liang. Problems-solving strategies in clinical treatment guideline for traditional Chinese medicine and integrative medicine. Journal of Chinese Integrative Medicine, 2008, 6(1): 1-4
[2] Zhao-guo Li. Discussion on English translation of commonly used sentences in traditional Chinese medicine: part one. Journal of Chinese Integrative Medicine, 2008, 6(1): 107-110
[3] Jun Hu, Jian-ping Liu. Non-invasive physical treatments for chronic/recurrent headache. Journal of Chinese Integrative Medicine, 2008, 6(1): 31
[4] Xue-mei Liu, Qi-fu Huang, Yun-ling Zhang, Jin-li Lou, Hong-sheng Liu, Hong Zheng. Effects of Tribulus terrestris L. saponion on apoptosis of cortical neurons induced by hypoxia-reoxygenation in rats. Journal of Chinese Integrative Medicine, 2008, 6(1): 45-50
[5] . Uniform requirements for manuscripts submitted to biomedical journals: Writing and editing for biomedical publication (Chinese version, part two). Journal of Chinese Integrative Medicine, 2010, 8(11): 1001-1005
[6] Daniel Weber, Janelle M Wheat, Geoffrey M Currie. Inflammation and cancer: Tumor initiation, progression and metastasis,and Chinese botanical medicines. Journal of Chinese Integrative Medicine, 2010, 8(11): 1006-1013
[7] Hong Liu , Guo-liang Zhang, Li Shen , Zhen Zeng, Bao-luo Zhou, Cheng-hai Liu, Guang Nie . Application and evaluation of a pseudotyped virus assay for screening herbs for anti-H5Nl avian influenza virus. Journal of Chinese Integrative Medicine, 2010, 8(11): 1036-1040
[8] Zhao-guo Li . A discussion of English translation of 1995 and 1997 Chinese National Standards of Traditional Chinese Medical Terminologies for Clinical Diagnosis and Treatment. Journal of Chinese Integrative Medicine, 2010, 8(11): 1090-1096
[9] Rui Jin, Bing Zhang. A complexity analysis of Chinese herbal property theory: the multiple formations of herbal property (Part 1). Journal of Chinese Integrative Medicine, 2012, 10(11): 1198-1205
[10] Hui-min Liu, Xian-bo Wang, Yu-juan Chang, Li-li Gu. Systematic review and meta-analysis of randomized controlled trials of integrative medicine therapy for treatment of chronic severe hepatitis. Journal of Chinese Integrative Medicine, 2012, 10(11): 1211-1228