Search JIM Advanced Search

Journal of Integrative Medicine ›› 2015, Vol. 13 ›› Issue (5): 289-296.doi: 10.1016/S2095-4964(15)60187-X

• Review • Previous Articles     Next Articles

Autophagy in cerebral ischemia and the effects of traditional Chinese medicine

Xiao-ping Huanga, Huang Dingb, Jin-dong Luc, Ying-hong Tangb, Bing-xiang Dengc, Chang-qing Denga   

  1. a Molecular Pathology Laboratory, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
    b Key Laboratory of Hunan Province for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-cerebral Diseases, Changsha 410208, Hunan Province, China
    c Key Laboratory of Hunan Universities for Cell Biology and Molecular Techniques, Changsha 410208, Hunan Province, China
  • Received:2015-01-25 Accepted:2015-04-14 Online:2015-09-10 Published:2015-09-15

Autophagy is a lysosome-mediated degradation process for non-essential or damaged cellular constituents, playing an important homeostatic role in cell survival, differentiation and development to maintain homeostasis. Autophagy is involved in tumors as well as neurodegenerative, cardiovascular and cerebrovascular diseases. Recently, active compounds from traditional Chinese medicine (TCM) have been found to modulate the levels of autophagy in tumor cells, nerve cells, myocardial cells and endothelial cells. Ischemic stroke is a major cause of neurological disability and places a heavy burden on family and society. Regaining function can significantly reduce dependence and improve the quality of life of stroke survivors. In healthy cells, autophagy plays a key role in adapting to nutritional deprivation and eliminating aggregated proteins, however inappropriate activation of autophagy may lead to cell death in cerebral ischemia. This paper reviews the process and the molecular basis of autophagy, as well as its roles in cerebral ischemia and the roles of TCM in modulating its activity.

Key words: Autophagy, Brain ischemia, Drugs, Chinese herbal, Medicine, Traditional Chinese, Review

[1] Zheng YQ, Liu JX, Li XZ, Xu L, Xu YG . RNA interference-mediated downregulation of Beclin1 attenuates cerebral ischemic injury in rats. Acta Pharmacol Sin, 2009,30(7):919-927
doi: 10.1038/aps.2009.79 pmid: 4006642
[2] Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD, Han F, Fukunaga K, Qin ZH . Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy, 2008,4(6):762-769
doi: 10.4161/auto.6412
[3] Puyal J, Vaslin A, Mottier V, Clarke PG . Postischemic treatment of neonatal cerebral ischemia should target autophagy. Ann Neurol, 2009,66(3):378-389
doi: 10.1002/ana.21714 pmid: 19551849
[4] Kroemer G , Mariño G, Levine B. Autophagy and the integrated stress response. Mol Cell, 2010,40(2):280-293
doi: 10.1016/j.molcel.2010.09.023
[5] Li L, Zhang Q, Tan J, Fang Y, An X, Chen B . Autophagy and hippocampal neuronal injury. Sleep Breath, 2014,18(2):243-249
doi: 10.1007/s11325-013-0930-4 pmid: 24402351
[6] Uchiyama Y, Shibata M, Koike M, Yoshimura K, Sasaki M . Autophagy — physiology and pathophysiology. Histochem Cell Biol, 2008,129(4):407-420
doi: 10.1007/s00418-008-0406-y pmid: 2668654
[7] Wullschleger S, Loewith R, Hall MN . TOR signaling in growth and metabolism. Cell, 2006,124(3):471-484
doi: 10.1016/j.cell.2006.01.016 pmid: 16469695
[8] Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, Guan JL, Oshiro N, Mizushima N . Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell, 2009,20(7):1981-1991
doi: 10.1091/mbc.E08-12-1248 pmid: 2663915
[9] Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, Kundu M, Kim DH . ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell, 2009,20(7):1992-2003
doi: 10.1091/mbc.e08-12-1249
[10] Mercer CA, Kaliappan A, Dennis PB . A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy, 2009,5(5):649-662
doi: 10.4161/auto.5.5.8249
[11] Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X . ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem, 2009,284(18):12297-12305
doi: 10.1074/jbc.M900573200
[12] Kihara A, Noda T, Ishihara N, Ohsumi Y . Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol, 2001,152(3):519-530
doi: 10.1083/jcb.152.3.519
[13] Funderburk SF, Wang QJ, Yue Z . The Beclin 1-VPS34 complex — at the crossroads of autophagy and beyond. Trends Cell Biol, 2010,20(6):355-362
doi: 10.1016/j.tcb.2010.03.002 pmid: 20356743
[14] Yang Z, Klionsky DJ . Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol, 2010,22(2):124-131
doi: 10.1016/ pmid: 20034776
[15] Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH, Jung JU . Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol, 2006,8(7):688-699
doi: 10.1038/ncb1426 pmid: 16799551
[16] Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y, Liang C, Jung JU, Cheng JQ, Mulé JJ, Pledger WJ, Wang HG . Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol, 2007,9(1):1142-1151
doi: 10.1038/ncb1634 pmid: 2254521
[17] Ohsumi Y . Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol, 2001,2(3):211-216
doi: 10.1038/35056522
[18] Geng J, Klionsky DJ . The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep, 2008,9(9):859-864
doi: 10.1038/embor.2008.163
[19] Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T . The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Bio Cell, 2008,19(5):2092-2100
doi: 10.1091/mbc.e07-12-1257
[20] Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, Takao T, Inagaki F, Ohsumi Y . The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem, 2007,282(52):37298-37302
doi: 10.1074/jbc.C700195200 pmid: 17986448
[21] J?ger S, Bucci C, Tanida I, Ueno T, Kominami E, Saftig P, Eskelinen EL . Role for Rab7 in maturation of late autophagic vacuoles. J Cell Sci, 2004,117(Pt 20):4837-4848
[22] Tanaka Y, Guhde G, Suter A, Eskelinen EL, Hartmann D, Lüllmann-Rauch R, Janssen PM, Blanz J, von Figura K, Saftig P . Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature, 2000,406(6798):902-906
doi: 10.1038/35022595 pmid: 202020202020202022020
[23] Mizushima N, Komatsu M . Autophagy: renovation of cells and tissues. Cell, 2011,147(4):728-741
doi: 10.1016/j.cell.2011.10.026 pmid: 22078875
[24] Xu F, Gu JH, Qin ZH . Neuronal autophagy in cerebral ischemia. Neurosci Bull, 2012,28(5):658-666
doi: 10.1007/s12264-012-1268-9
[25] Chen W, Sun Y, Liu K, Sun X . Autophagy: a double-edged sword for neuronal survival after cerebral ischemia. Neural Regen Res, 2014,9(12):1210-1216
doi: 10.4103/1673-5374.135329 pmid: 25206784
[26] Carloni S, Girelli S, Scopa C, Buonocore G, Longini M, Balduini W . Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia. Autophagy, 2010,6(3):366-377
doi: 10.4161/auto.6.3.11261
[27] Carloni S, Buonocore G, Balduini W . Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol Dis, 2008,32(3):329-339
doi: 10.1016/j.nbd.2008.07.022
[28] Buckley KM, Hess DL, Sazonova IY, Periyasamy-Thandavan S, Barrett JR, Kirks R, Grace H, Kondrikova G, Johnson MH, Hess DC, Schoenlein PV, Hoda MN, Hill WD . Rapamycin up-regulation of autophagy reduces infarct size and improves outcomes in both permanent MCAL, and embolic MCAO, murine models of stroke. Exp Transl Stroke Med, 2014,6: 8
doi: 10.1186/2040-7378-6-8
[29] Zhang X, Yan H, Yuan Y, Gao J, Shen Z, Cheng Y, Shen Y, Wang RR, Wang X, Hu WW, Wang G, Chen Z . Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy, 2013,9(9):1321-1333
doi: 10.4161/auto.25132
[30] Li H, Gao A, Feng D, Wang Y, Zhang L, Cui Y, Li B, Wang Z, Chen G . Evaluation of the protective potential of brain microvascular endothelial cell autophagy on blood-brain barrier integrity during experimental cerebral ischemia-reperfusion injury. Transl Stroke Res, 2014,5(5):618-626
doi: 10.1007/s12975-014-0354-x
[31] Wang P, Guan YF, Du H, Zhai QW, Su DF, Miao CY . Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia. Autophagy, 2012,8(1):77-87
doi: 10.4161/auto.8.1.18274
[32] Sheng R, Liu XQ, Zhang LS, Gao B, Han R, Wu YQ, Zhang XY, Qin ZH . Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning. Autophagy, 2012,8(3):310-325
doi: 10.4161/auto.18673 pmid: 22361585
[33] Jiang T, Yu JT, Zhu XC, Zhang QQ, Tan MS, Cao L, Wang HF, Shi JQ, Gao L, Qin H, Zhang YD, Tan L . Ischemic preconditioning provides neuroprotection by induction of AMP-activated protein kinase-dependent autophagy in a rat model of ischemic stroke. Mol Neurobiol, 2015,51(1):220-229
doi: 10.1007/s12035-014-8725-6
[34] Kang C, Avery L . To be or not to be, the level of autophagy is the question: dual roles of autophagy in the survival response to starvation. Autophagy, 2008,4(1):82-84
doi: 10.4161/auto.5154
[35] Shi R, Weng J, Zhao L, Li XM, Gao TM, Kong J . Excessive autophagy contributes to neuron death in cerebral ischemia. CNS Neurosci Ther, 2012,18(3):250-260
doi: 10.1111/j.1755-5949.2012.00295.x pmid: 22449108
[36] Wang ZQ, Yang Y, Lu T, Luo P, Li J, Wu JP, Tang ZZ, Lu QP, Duan QH . Protective effect of autophagy inhibition on ischemia-reperfusion-induced injury of N2a cells. J Huazhong Univ Sci Technolog Med Sci, 2013,33(6):810-816
doi: 10.1007/s11596-013-1203-y pmid: 24337840
[37] Qin AP, Liu CF, Qin YY, Hong LZ, Xu M, Yang L, Liu J, Qin ZH, Zhang HL . Autophagy was activated in injured astrocytes and mildly decreased cell survival following glucose and oxygen deprivation and focal cerebral ischemia. Autophagy, 2010,6(6):738-753
doi: 10.4161/auto.6.6.12573
[38] Xu F, Li J, Ni W, Shen YW, Zhang XP . Peroxisome proliferator-activated receptor-γ agonist 15d-prostaglandin J2 mediates neuronal autophagy after cerebral ischemia-reperfusion injury. PLoS One, 2013,8(1):1-10
[39] Cui D, Wang L, Qi A, Zhou Q, Zhang X, Jiang W . Propofol prevents autophagic cell death following oxygen and glucose deprivation in PC12 cells and cerebral ischemia-reperfusion injury in rats. PLoS One, 2012,7(4):1-17
[40] Zheng Y, Hou J, Liu J, Yao M, Li L, Zhang B, Zhu H, Wang Z . Inhibition of autophagy contributes to melatonin-mediated neuroprotection against transient focal cerebral ischemia in rats. J Pharmacol Sci, 2014,124(3):354-364
doi: 10.1254/jphs.13220FP
[41] Gao L, Jiang T, Guo J, Liu Y, Cui G, Gu L, Su L, Zhang Y . Inhibition of autophagy contributes to ischemic postconditioning-induced neuroprotection against focal cerebral ischemia in rats. PLoS One, 2012,7(9):e46092
[42] Schlag EM, McIntosh MS . Ginsenoside content and variation among and within American ginseng(Panax quinquefolius L.) populations. Phytochemistry, 2006,67(14):1510-1519
doi: 10.1016/j.phytochem.2006.05.028
[43] Lu T, Jiang Y, Zhou Z, Yue X, Wei N, Chen Z, Ma M, Xu G, Liu X . Intranasal ginsenoside Rb1 targets the brain and ameliorates cerebral ischemia/reperfusion injury in rats. Biol Pharm Bull, 2011,34(8):1319-1324
doi: 10.1248/bpb.34.1319
[44] Liu AJ, Wang SH, Hou SY, Lin CJ, Chiu WT, Hsiao SH, Chen TH, Shih CM . Evodiamine induces transient receptor potential vanilloid-1-mediated protective autophagy in U87-MG astrocytes. Evid Based Complement Alternat Med, 2013, 2013: 354840
[45] Qi Z, Yan F, Shi W, Zhang C, Dong W, Zhao Y, Shen J, Ji X, Liu KJ, Luo Y . AKT-related autophagy contributes to the neuroprotective efficacy of hydroxysafflor yellow A against ischemic stroke in rats. Transl Stroke Res, 2014,5(4):501-509
doi: 10.1007/s12975-014-0346-x
[46] Wang PR, Wang JS, Zhang C, Song XF, Tian N, Kong LY . Huang-Lian-Jie-Du-Decotion induced protective autophagy against the injury of cerebral ischemia/reperfusion via MAPK-mTOR signaling pathway. J Ethnopharmacol, 2013,149(1):270-280
doi: 10.1016/j.jep.2013.06.035
[47] Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B . Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell, 2005,122(6):927-939
doi: 10.1016/j.cell.2005.07.002
[48] Yang Y, Gao K, Hu Z, Li W, Davies H, Ling S, Rudd JA, Fang M . Autophagy upregulation and apoptosis downregulation in DAHP and triptolide treated cerebral ischemia. Mediators Inflamm, 2015, 2015: 120198
[49] Wang R, Liu YY, Liu XY, Jia SW, Zhao J, Cui D, Wang L . Resveratrol protects neurons and the myocardium by reducing oxidative stress and ameliorating mitochondria damage in a cerebral ischemia rat model. Cell Physiol Biochem, 2014,34(3):854-864
doi: 10.1159/000366304
[50] Liu L, Fang YQ, Xue ZF, He YP, Fang RM, Li L . Beta-asarone attenuates ischemia-reperfusion-induced autophagy in rat brains via modulating JNK, p-JNK, Bcl-2 and Beclin 1. Eur J Pharmacol, 2012,680(1-3):34-40
doi: 10.1016/j.ejphar.2012.01.016
[51] Mo ZT, Fang YQ, He YP, Zhang S . β-Asarone protects PC12 cells against OGD/R-induced injury via attenuating Beclin-1-dependent autophagy. Acta Pharmacol Sin, 2012,33(6):737-742
doi: 10.1038/aps.2012.35
[52] Huang XP, Tan H, Chen BY, Deng CQ . Astragalus extract alleviates nerve injury after cerebral ischemia by improving energy metabolism and inhibiting apoptosis. Biol Pharm Bull, 2012,35(4):449-454
[53] Chiu BY, Chang CP, Lin JW, Yu JS, Liu WP, Hsu YC, Lin MT . Beneficial effect of astragalosides on stroke condition using PC12 cells under oxygen glucose deprivation and reperfusion. Cell Mol Neurobiol, 2014,34(6):825-837
doi: 10.1007/s10571-014-0059-4
[54] Zheng YQ, Liu JX, Xu L, Yao MJ, Song WT . Study on effect of weinaokang and bilobalide on autophagy and neurogenesis induced by focal cerebral ischemia reperfusion. Zhongguo Zhong Yao Za Zhi, 2013,38(13):2182-2186
[55] Liu HQ, Wang Y, Guo LZ, Huang HC, Zhong RL, Xia Z . Research of Xijiao Dihuang Decoction on expression of autophagy related protein Atg-5 and Beclin-1 in rats with cerebral ischemia. Nanjing Zhong Yi Yao Da Xue Xue Bao, 2014,30(1):61-64
[56] Tyagi N, Qipshidze N, Munjal C, Vacek JC, Metreveli N, Givvimani S, Tyagi SC . Tetrahydrocurcumin ameliorates homocysteinylated cytochrome-c mediated autophagy in hyperhomocysteinemia mice after cerebral ischemia. J Mol Neurosci, 2012,47(1):128-138
doi: 10.1007/s12031-011-9695-z
[57] Guo Z, Cao G, Yang H, Zhou H, Li L, Cao Z, Yu B, Kou J . A combination of four active compounds alleviates cerebral ischemia-reperfusion injury in correlation with inhibition of autophagy and modulation of AMPK/mTOR and JNK pathways. J Neurosci Res, 2014,92(10):1295-1306
doi: 10.1002/jnr.23400
[1] Brody Slostad, Tejinder Khalsa, Kathleen Young, Hildalicia Guerra, Anjali Bhagra. A case-based approach to integrative medicine for cardiovascular disease prevention. Journal of Integrative Medicine, 2020, 18(2): 159-162.
[2] Ameena Yasmeen, Ghulamuddin Sofi, Kaleemullah Khan. Aamar-e-Advia (shelf-lives) of drugs in Unani system of medicine: A conceptual review. Journal of Integrative Medicine, 2020, 18(2): 114-124.
[3] Louisa Sylvia, Emerson West, Allyson M. Blackburn, Carina Gupta, Eric Bui, Tara Mahoney, Geraldine Duncan, Edward C. Wright, Simon Lejeune, Thomas J. Spencer. Acceptability of an adjunct equine-assisted activities and therapies program for veterans with posttraumatic stress disorder and/or traumatic brain injury. Journal of Integrative Medicine, 2020, 18(2): 169-173.
[4] Sherman Gu, Arthur Yin Fan. Controversial conclusions from two randomized controlled trials for acupuncture's effects on polycystic ovary syndrome or in vitro fertilization support. Journal of Integrative Medicine, 2020, 18(2): 89-91.
[5] Xue-qing Yu, Shu-guang Yang, Yang Xie, Jian-sheng Li. Traditional Chinese medicine in the treatment of idiopathic pulmonary fibrosis based on syndrome differentiation: Study protocol of exploratory trial. Journal of Integrative Medicine, 2020, 18(2): 163-168.
[6] Deng-hai Zhang, Kun-lun Wu, Xue Zhang, Sheng-qiong Deng, Bin Peng. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. Journal of Integrative Medicine, 2020, 18(2): 152-158.
[7] Chang-quan Ling. Traditional Chinese medicine is a resource for drug discovery against 2019 novel coronavirus (SARS-CoV-2). Journal of Integrative Medicine, 2020, 18(2): 87-88.
[8] Sajjad Sadeghi, Farzaneh Ghaffari, Ghazaleh Heydarirad, Mehdi Alizadeh. Galen’s place in Avicenna’s The Canon of Medicine : Respect, confirmation and criticism. Journal of Integrative Medicine, 2020, 18(1): 21-25.
[9] Maryam Naeimia, Narjes Gorjib, Zahra Memarianib, Reihaneh Moeinib, Mohammad Kamalinejadc, Fatemeh Kolangid. Gastroprotective herbs for headache management in Persian medicine: A comprehensive review. Journal of Integrative Medicine, 2020, 18(1): 1-13.
[10] Mohadeseh Ostovar, Abolfazl Akbari, Mohammad Hossein Anbardar, Aida Iraji, Mohsen Salmanpour, Salar Hafez Ghoran, Mojtaba Heydari, Mesbah Shams. Effects of Citrullus colocynthis L. in a rat model of diabetic neuropathy. Journal of Integrative Medicine, 2020, 18(1): 59-67.
[11] Preecha Nootim, Nattiya Kapol, Waranee Bunchuailua, Panoopat Poompruek, Parankul Tungsukruthai . Current state of cancer patient care incorporating Thai traditional medicine in Thailand: A qualitative study. Journal of Integrative Medicine, 2020, 18(1): 41-45.
[12] Md. Anzar Alam, Mohd Aleemuddin Quamri, Ghulamuddin Sofi, Barkati Md.Tarique. Understanding hypothyroidism in Unani medicine. Journal of Integrative Medicine, 2019, 17(6): 387-391.
[13] Naghmeh Yazdi, Alireza Salehi, Mina Vojoud, Mohammad Hossein Sharifi, Ayda Hoseinkhani. Use of complementary and alternative medicine in pregnant women: a cross-sectional survey in the south of Iran. Journal of Integrative Medicine, 2019, 17(6): 392-395.
[14] Wen Qiang Lee, Jeremy Teoh, Pei Zheng Kenneth Lee, Zhi Xiong Gerard Low, Xueling Sim, Foong Fong Mary Chong, Norbert Ludwig Wagner. Factors influencing communication of traditional Chinese medicine use between patients and doctors: a multisite cross-sectional study. Journal of Integrative Medicine, 2019, 17(6): 396-403.
[15] Zienab Mahmoudpour, Javad Shokri, Mohammad Kamalinejad, Neda Meftah, Soraya Khafri, Seyyed Ali Mozaffarpur, Hoda Shirafkan. The efficacy of a Persian herbal formulation on functional bloating: A double-blind randomized controlled trial. Journal of Integrative Medicine, 2019, 17(5): 344-350.
Full text



[1] Zhi-chun Jin. Problems in establishing clinical guideline for integrated traditional Chinese and Western medicine. Journal of Chinese Integrative Medicine, 2008, 6(1): 5-8
[2] Min Cheng, Qiong Feng, Shu-wen Qian, Hui Gao, Cui-qing Zhu. Preliminary assay of p-amyloid binding elements in heart-beneficial recipe. Journal of Chinese Integrative Medicine, 2008, 6(1): 68-72
[3] Rui Jin, Bing Zhang. A complexity analysis of Chinese herbal property theory: the multiple formations of herbal property (Part 1). Journal of Chinese Integrative Medicine, 2012, 10(11): 1198-1205
[4] Liang-ping Hu, Xiao-lei Bao. Three-factor designs unable to examine the interactions (Part 2). Journal of Chinese Integrative Medicine, 2012, 10(11): 1229-1232
[5] Samadder Asmita, Das Jayeeta, Das Sreemanti, Biswas Raktim, Rahman Khuda-Bukhsh Anisur. Ameliorative potentials of Syzygium jambolanum extract against arsenic-induced stress in L6 cells in vitro. Journal of Chinese Integrative Medicine, 2012, 10(11): 1293-1302
[6] Li-hui Dang, Xiao-nan Yang, Qing Xia. Protective effects of Chaiqin Chengqi Decoction on isolated pancreatic acinar cells in acute pancreatitis rats and the mechanisms. Journal of Chinese Integrative Medicine, 2008, 6(2): 176-179
[7] Chang-en Wang, Zong-ran Pang, Ping Liu, Shan-shan Zhang. Application and projects approved for fundamental research on integrated traditional Chinese and Western medicine in National Natural Science Foundation of China from 2000 to 2004. Journal of Chinese Integrative Medicine, 2005, 3(1): 6-9
[8] Peng Jin, Wu Xia-qiu, He Li-yun, Fang Yi-gong, Zi Ming-jie, Yan Shi-yan, Liu Bao-yan. Effects of summer acupoint application therapy in reducing exacerbation frequency of chronic lung diseases: protocol of a retrospective and prospective study. Journal of Chinese Integrative Medicine, 2012, 10(1): 39-47
[9] Vamsi Reddy, Arvind Sridhar, Roberto F. Machado, Jiwang Chen. High sodium causes hypertension: Evidence from clinical trials and animal experiments. Journal of Integrative Medicine, 2015, 13(1): 1-8
[10] May To, Caroline Alexander. The effects of Park sham needles: A pilot study. Journal of Integrative Medicine, 2015, 13(1): 20-24