Search JIM Advanced Search

Journal of Chinese Integrative Medicine ›› 2008, Vol. 6 ›› Issue (2): 166-170.doi: 10.3736/jcim20080212

• Original Experimental Research • Previous Articles     Next Articles

Immunomodulatory effects of Astragalus polysaccharide in diabetic mice

Ru-jiang Li1, Shu-dong Qiu1(), Hong-xia Chen2, Li-rong Wang1   

  1. 1. Reproduction Centre, Medical School, Xian Jiao Tong University, Xian, Shannxi Province 710061, China
    2. Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
  • Received:2007-04-17 Online:2008-02-20 Published:2008-02-15
  • Contact: QIU Shu-dong E-mail:lingshangfei@163.com

Objective:To study the immunomodulatory effects of Astragalus polysaccharide (APS) in type 1 diabetic mice.

Methods:A mouse model of type 1 diabetes mellitus was established by intraperitoneal injection of multiple low dose streptozotocin (MLD-STZ). The diabetic mice were intraperitoneally administered 100, 200, 400 mg/kg APS or 1 ml normal saline (NS) every day respectively, then the diabetic mice were sacrificed after 15 or 30 days of treatment. The effect of APS on insulitis was determined via pancreatic histological analysis. Serum insulin autoantibody (IAA) levels were measured by radio-immunoassay (RIA). Proliferation ability of splenocytes to concanavalin A was tested by using [ 3H] thymidine incorporation assay. The levels of cytokine interferon-γ (IFN-γ) and interleukin-4 (IL-4) secreted by splenocytes were determined by enzyme linked immunosorbent assay (ELISA) method, and the expression of peroxisome proliferator-activated receptor gamma (PPARγ) in spleens was characterized using Western-blot analysis.

Results:Attenuated insulitis, down-regulation of the serum IAA levels and Th1/Th2 cytokine ratio, decrease of the proliferation ability of splenocytes to concanavalin A, and up-regulation of the PPARγ levels in spleens showed a significant time- and dose-dependent response to APS treatment as compared with the NS-treated group.

Conclusion:APS possesses immunotherapeutic effects on mice with type 1 diabetes mellitus through improving the cell- and humoral-mediated immunity.

Key words: Astragalus, diabetes mellitus, typel, immunomodulators, mice

CLC Number: 

  • R587.1

Table 1

Effect of APS on IAA in diabetic mice after 15 or 30 days of treatment ($\bar{x}$±s)"

Group n IAA level at day 15 IAA level at day 30
Normal control 10 1 207.7±99.6 1 238.5±118.1
NS-treated 10 1 798.7±98.2** 1 813.2±101.9**
Low-dose APS-treated 10 1 718.1±149.9** 1 559.5±112.1△△**
Medium-dose APS-treated 10 1 682.6±94.7** 1 485.8±119.3△△**
High-dose APS-treated 10 1 679.8±156.1** 1 355.7±131.0△△*

Figure 1

Pancreata immuno-labled for insulin and counterstained for lymphocytic infiltration in pancreas islets after 30 days of APS treatment (DAB staining and hematoxylin counterstaining, ×200) A: Normal control group; B: Untreated group; C: Low-dose APS-treated group; D: Medium-dose APS-treated group; E: High-dose APS-treated group."

Table 2

Proliferation ability of splenocytes treated with Con A after 15 or 30 days of administration of APS ($\bar{x}$±s)"

Group n CPM at day 15 CPM at day 30
Normal control 5 9 427.5±1 613.6 8 936.4±2 036.4
NS-treated 5 15 950.1±2 262.2** 19 729.6±2 345.8**
Low-dose APS-treated 5 14 410.0±2 781.8** 13 417.2±2 919.1**
Medium-dose APS-treated 5 14 111.4±2 327.3** 12 994.5±2 849.4**
High-dose APS-treated 5 13 999.8±2 636.9** 12 008.1±2 970.4**

Table 3

Effect of APS on productions of IL-4, IFN-γ and IFN-γ/IL-4 ratio of diabetic splenocytes induced by Con A ($\bar{x}$±s)"

Group n 15 days of treatment 30 days of treatment
IL-4 (ng/L) IFN-γ (ng/L) IFN-γ/IL-4 IL-4 (ng/L) IFN-γ (ng/L) IFN-γ/IL-4
Normal control 5 241±6 227±18 0.94±0.06 238±21 243±20 1.02±0.06
NS-treated 5 181±52** 303±45** 1.71±0.11** 156±37** 308±37** 2.05±0.45**
Low-dose APS-treated 5 189±31* 281±44** 1.90±0.09** 167±31** 277±41 1.71±0.33**
Medium-dose APS-treated 5 191±41* 284±38** 1.52±0.08** 205±52 265±38 1.34±0.29△△
High-dose APS-treated 5 192±31* 285±51** 1.49±0.09** 222±45△△ 255±29△△ 1.17±0.14△△

Figure 2

Western blot analysis of PPARγ protein expression in spleens of diabetic mice after 30 days of APS treatment1: Normal control group; 2: Untreated group; 3: Low-dose APS-treated group; 4: Medium-dose APS-treated group; 5: High-dose APS-treated group."

[1] Roep BO . The role of T-cells in the pathogenesis of type 1 diabetes: from cause to cure. Diabetologia. 2003; 46(3):305-321.
doi: 10.1007/s00125-003-1089-5 pmid: 12687328
[2] Silveira PA, Grey ST . B cells in the spotlight: innocent bystanders or major players in the pathogenesis of type 1 diabetes. Trends Endocrinol Me tab. 2006; 17(4):128-135.
doi: 10.1016/j.tem.2006.03.006
[3] Lipsett M, Aikin R, Hanley S , et al. Islet neogenesis: a potential therapeutic tool in type 1 diabetes. Int J Biochem Cell Biol. 2006; 38(4):498-503.
doi: 10.1016/j.biocel.2006.02.005 pmid: 16607698
[4] Su L, Mao JC , Gu JH. Effect of intravenous drip infusion of cyclophosphamide with high-dose Astragalus injection in treating lupus nephritis. Zhong Xi Yi Jie He Xue Bao. 2007; 5(3):272-275. Chinese with abstract in English.
苏励, 茅建春, 顾军花 . 环磷酰胺联合大剂量黄芪注射液静脉滴注治疗狼疮性肾炎.中西医结合学报. 2007; 5(3):272-275.
[5] Chen W, Liu F, Yu MH , et al. Astragalus polysaccharide prevent type 1 diabetes in nonobese diabetic mice. Fu Dan Xue Bao ( Yi Xue Ke Xue Ban). 2001; 28(1):57-60. Chinese with abstract in English.
doi: 10.3969/j.issn.1672-8467.2001.01.016
陈蔚, 刘芳, 俞茂华 , 等. 黄芪多糖对NOD小鼠1型糖尿病的预防作用. 复旦学报(医学科学版). 2001; 28(1):57-60.
doi: 10.3969/j.issn.1672-8467.2001.01.016
[6] Weng L, Liu Y, Liu XY , et al. Effect of Astragalus polysaccharide on splenocyte cytokine secretion patterns and NK cells. Zhong Yi Yao Xue Kan. 2003; 21(9):1522-1524. Chinese.
翁玲, 刘彦, 刘学英 , 等. 黄芪多糖粉针剂对小鼠脾细胞分泌细胞因子及NK杀伤能力的影响.中医药学刊. 2003; 21(9):1522-1524.
[7] Gor DO, Rose NR, Greenspan NS . TH1-TH2: a Procrustean paradigm. Nat Immunol. 2003; 4(6):503-505.
doi: 10.1016/j.envpol.2008.09.038 pmid: 12774069
[1] Yunita Sari, Akhyarul Anam, Annas Sumeru, Eman Sutrisna. The knowledge, attitude, practice and predictors of complementary and alternative medicine use among type 2 diabetes mellitus patients in Indonesia. Journal of Integrative Medicine, 2021, 19(4): 347-353.
[2] Abdulhakim Abubakar, Abdullahi Balarabe Nazifi, Idris Mohammed Maje, Yusuf Tanko, Joseph Akpojo Anuka, Ezzeldin Mukthar Abdurahman. Antihyperglycaemic activity of ethylacetate extract of Chlorophytum alismifolium in type 2 diabetes: The involvement of peroxisome proliferator-activated receptor-γ and dipeptidyl peptidase-4. Journal of Integrative Medicine, 2021, 19(1): 78-84.
[3] Pukar Khanal, Basanagouda M. Patil. Integration of network and experimental pharmacology to decipher the antidiabetic action of Duranta repens L.. Journal of Integrative Medicine, 2021, 19(1): 66-77.
[4] Baoyi Shao, Saiying Hou, Yuenyan Chan, Changchun Shao, Lixing Lao. Remission of new-onset type 2 diabetes mellitus in an adolescent using an integrative medicine approach: A case report. Journal of Integrative Medicine, 2021, 19(1): 85-88.
[5] Mohadeseh Ostovar, Abolfazl Akbari, Mohammad Hossein Anbardar, Aida Iraji, Mohsen Salmanpour, Salar Hafez Ghoran, Mojtaba Heydari, Mesbah Shams. Effects of Citrullus colocynthis L. in a rat model of diabetic neuropathy. Journal of Integrative Medicine, 2020, 18(1): 59-67.
[6] Olakunle Bamikole Afolabi, Omotade Ibidun Oloyede, Shadrack Oludare Agunbiade. Inhibitory potentials of phenolic-rich extracts from Bridelia ferruginea on two key carbohydrate-metabolizing enzymes and Fe2+-induced pancreatic oxidative stress. Journal of Integrative Medicine, 2018, 16(3): 192-198.
[7] Chun-song Hu, Tengiz Tkebuchava. SEEDi1.0-3.0 strategies for major noncommunicable diseases in China. Journal of Integrative Medicine, 2017, 15(4): 265-269.
[8] Uduak Akpan Okon, Idorenyin Udo Umoren. Comparison of antioxidant activity of insulin, Ocimum gratissimum L., and Vernonia amygdalina L. in type 1 diabetic rat model. Journal of Integrative Medicine, 2017, 15(4): 302-309.
[9] Nazli Samadi, Hassan Mozaffari-Khosravi, Masoud Rahmanian, Mohsen Askarishahi. Effects of bee propolis supplementation on glycemic control, lipid profile and insulin resistance indices in patients with type 2 diabetes: A randomized, double-blind clinical trial. Journal of Integrative Medicine, 2017, 15(2): 124-134.
[10] Ausanee Wanchai, Duangjai Phrompayak. Use of complementary and alternative medicine among Thai patients with type 2 diabetes mellitus. Journal of Integrative Medicine, 2016, 14(4): 297-305.
[11] Yee Chi Peggy Wong. Need of integrated dietary therapy for persons with diabetes mellitus and “unhealthy” body constitution presentations. Journal of Integrative Medicine, 2016, 14(4): 255-268.
[12] Sulaiman Al-Eidi, SalwaTayel, Fatima Al-Slail, Naseem Akhtar Qureshi, Imen Sohaibani, Mohamed Khalil, Abdullah Mohammad Al-Bedah. Knowledge, attitude and practice of patients with type 2 diabetes mellitus towards complementary and alternative medicine. Journal of Integrative Medicine, 2016, 14(3): 187-196.
[13] Mohammad Hashem Hashempur, Mojtaba Heydari, Seyed Hamdollah Mosavat, Seyyed Taghi Heydari, Mesbah Shams. Complementary and alternative medicine use in Iranian patients with diabetes mellitus. Journal of Integrative Medicine, 2015, 13(5): 319-325.
[14] Ahmad Ghorbani. Clinical and experimental studies on polyherbal formulations for diabetes: Current status and future prospective. Journal of Integrative Medicine, 2014, 12(4): 336-345.
[15] Rajadurai Akilen​, Zeller Pimlott​, Amalia Tsiami​, Nicola Robinson​. The use of complementary and alternative medicine by individuals with features of metabolic syndrome. Journal of Integrative Medicine, 2014, 12(3): 171-174.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wei-xiong Liang. Problems-solving strategies in clinical treatment guideline for traditional Chinese medicine and integrative medicine. Journal of Chinese Integrative Medicine, 2008, 6(1): 1-4
[2] Zhao-guo Li. Discussion on English translation of commonly used sentences in traditional Chinese medicine: part one. Journal of Chinese Integrative Medicine, 2008, 6(1): 107-110
[3] Jun Hu, Jian-ping Liu. Non-invasive physical treatments for chronic/recurrent headache. Journal of Chinese Integrative Medicine, 2008, 6(1): 31
[4] Xue-mei Liu, Qi-fu Huang, Yun-ling Zhang, Jin-li Lou, Hong-sheng Liu, Hong Zheng. Effects of Tribulus terrestris L. saponion on apoptosis of cortical neurons induced by hypoxia-reoxygenation in rats. Journal of Chinese Integrative Medicine, 2008, 6(1): 45-50
[5] . Uniform requirements for manuscripts submitted to biomedical journals: Writing and editing for biomedical publication (Chinese version, part two). Journal of Chinese Integrative Medicine, 2010, 8(11): 1001-1005
[6] Daniel Weber, Janelle M Wheat, Geoffrey M Currie. Inflammation and cancer: Tumor initiation, progression and metastasis,and Chinese botanical medicines. Journal of Chinese Integrative Medicine, 2010, 8(11): 1006-1013
[7] Hong Liu , Guo-liang Zhang, Li Shen , Zhen Zeng, Bao-luo Zhou, Cheng-hai Liu, Guang Nie . Application and evaluation of a pseudotyped virus assay for screening herbs for anti-H5Nl avian influenza virus. Journal of Chinese Integrative Medicine, 2010, 8(11): 1036-1040
[8] Zhao-guo Li . A discussion of English translation of 1995 and 1997 Chinese National Standards of Traditional Chinese Medical Terminologies for Clinical Diagnosis and Treatment. Journal of Chinese Integrative Medicine, 2010, 8(11): 1090-1096
[9] Rui Jin, Bing Zhang. A complexity analysis of Chinese herbal property theory: the multiple formations of herbal property (Part 1). Journal of Chinese Integrative Medicine, 2012, 10(11): 1198-1205
[10] Hui-min Liu, Xian-bo Wang, Yu-juan Chang, Li-li Gu. Systematic review and meta-analysis of randomized controlled trials of integrative medicine therapy for treatment of chronic severe hepatitis. Journal of Chinese Integrative Medicine, 2012, 10(11): 1211-1228