Search JIM Advanced Search

Journal of Integrative Medicine ›› 2021, Vol. 19 ›› Issue (1): 66-77.doi: 10.1016/j.joim.2020.10.003

• Original Experimental Research • Previous Articles     Next Articles

Integration of network and experimental pharmacology to decipher the antidiabetic action of Duranta repens L.

Pukar Khanal, Basanagouda M. Patil   

  1. Department of Pharmacology and Toxicology, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
  • Received:2020-04-08 Accepted:2020-08-28 Online:2021-01-12 Published:2020-10-07
  • Contact: Pukar Khanal; E-mail address: pukarkhanal58@gmail.com. Basanagouda M. Patil; E-mail address: drbmpatil@klepharm.edu; bmpatil59@hotmail.com.

Objective
Duranta repens is reported to contain a wide array of secondary metabolites, including α-amylase and α-glucosidase inhibitors, and it has potent antioxidant activity. The present study evaluated the network pharmacology of D. repens (whole plant) with targets related to diabetes mellitus and assessed its outcome by evaluating the effects of the hydroalcoholic extract of D. repens in streptozotocin-nicotinamide-induced diabetes mellitus.

Methods
Phytoconstituents of D. repens were retrieved from an open-source database and published literature, and their targets were predicted for diabetes mellitus using BindingDB and the therapeutic target database. Protein-protein interaction was predicted using STRING, and pathways involved in diabetes mellitus were identified using the Kyoto Encyclopedia of Genes and Genomes pathway browser. Druglikeness, ADMET profile (absorption, distribution, metabolism, excretion and toxicity) and cytotoxicity of compounds modulating proteins involved in diabetes were predicted using MolSoft, admetSAR2.0 and CLC-Pred, respectively. The interaction network among phytoconstituents, proteins and pathways was constructed using Cytoscape, and the docking study was performed using autodock4.0. The hydroalcoholic extract of D. repens was evaluated using streptozotocin-nicotinamide-induced diabetes mellitus animal model for 28 d, followed by an oral glucose tolerance test. At the end of the study, biochemical parameters like glycogen content, hepatic enzymes, antioxidant biomarkers and lipid profiles were quantified. Further, the liver and pancreas were collected for a histopathology study.

Results
Thirty-six different secondary metabolites from D. repens were identified to regulate thirty-one targets involved in diabetes mellitus, in which protein-tyrosine phosphatase 1B (PTP1B) was primarily targeted. Enrichment analysis of modulated proteins identified 12 different pathways in diabetic pathogenesis in which the phosphatidylinositol 3-kinase-protein kinase B (PI3K-Akt) signaling pathway was chiefly regulated. The docking study found that durantanin I possessed the highest binding affinity (–8.9 kcal/mol) with PTP1B. Similarly, ADMET profiling showed that the majority of bioactive constituents from D. repens had higher human intestinal absorptivity and minimal cytotoxicity to normal cell lines, than tumor cell lines. Further, an in vivo animal study reflected the efficacy of the hydroalcoholic extract of D. repens to lower the elevated blood glucose level by stimulating insulin secretion, maintaining pancreatic β cell mass, regulating glycolysis/gluconeogenesis and upregulating the glucose uptake in skeletal muscles.

Conclusion
The present study reflected the probable network interaction of bioactive constituents from D. repens, their targets and modulated pathways, which identified the prime regulation of the PI3K-Akt signaling pathway and PTP1B protein. Modulation of PTP1B protein and PI3K-Akt signaling pathway could contribute to enhancing glucose uptake, insulin production and glycolysis and decreasing gluconeogenesis in diabetes, which was evaluated via the experimental study.


Key words: Diabetes mellitus, Duranta repens, Durantanin I, Network pharmacology, Phosphatidylinositol 3-kinase-protein kinase B signaling pathway, Protein-tyrosine phosphatase 1B

[1] Abdulhakim Abubakar, Abdullahi Balarabe Nazifi, Idris Mohammed Maje, Yusuf Tanko, Joseph Akpojo Anuka, Ezzeldin Mukthar Abdurahman. Antihyperglycaemic activity of ethylacetate extract of Chlorophytum alismifolium in type 2 diabetes: The involvement of peroxisome proliferator-activated receptor-γ and dipeptidyl peptidase-4. Journal of Integrative Medicine, 2021, 19(1): 78-84.
[2] Baoyi Shao, Saiying Hou, Yuenyan Chan, Changchun Shao, Lixing Lao. Remission of new-onset type 2 diabetes mellitus in an adolescent using an integrative medicine approach: A case report. Journal of Integrative Medicine, 2021, 19(1): 85-88.
[3] Abdulhakim Abubakar, Abdullahi Balarabe Nazifi, Idris Mohammed Maje, Yusuf Tanko, Joseph Akpojo Anuka, Ezzeldin Mukthar Abdurahman. Antihyperglycaemic activity of ethylacetate extract of Chlorophytum alismifolium in type 2 diabetes: The involvement of peroxisome proliferator-activated receptor-γ and dipeptidyl peptidase-4. Journal of Integrative Medicine, 2020, 18(6): 514-521.
[4] Zi-jia Zhang, Wen-yong Wu, Jin-jun Hou, Lin-lin Zhang, Fei-fei Li, Lei Gao, Xing-dong Wu, Jing-ying Shi, Rong Zhang, Hua-li Long, Min Lei, Wan-ying Wu, De-an Guo, Kai-xian Chen, Lewis A. Hofmann, Zhonghua Ci. Active constituents and mechanisms of Respiratory Detox Shot, a traditional Chinese medicine prescription, for COVID-19 control and prevention: network-molecular docking-LC-MSE analysis. Journal of Integrative Medicine, 2020, 18(3): 229-241.
[5] Chang-quan Ling. Traditional Chinese medicine is a resource for drug discovery against 2019 novel coronavirus (SARS-CoV-2). Journal of Integrative Medicine, 2020, 18(2): 87-88.
[6] Deng-hai Zhang, Kun-lun Wu, Xue Zhang, Sheng-qiong Deng, Bin Peng. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. Journal of Integrative Medicine, 2020, 18(2): 152-158.
[7] Mohadeseh Ostovar, Abolfazl Akbari, Mohammad Hossein Anbardar, Aida Iraji, Mohsen Salmanpour, Salar Hafez Ghoran, Mojtaba Heydari, Mesbah Shams. Effects of Citrullus colocynthis L. in a rat model of diabetic neuropathy. Journal of Integrative Medicine, 2020, 18(1): 59-67.
[8] Olakunle Bamikole Afolabi, Omotade Ibidun Oloyede, Shadrack Oludare Agunbiade. Inhibitory potentials of phenolic-rich extracts from Bridelia ferruginea on two key carbohydrate-metabolizing enzymes and Fe2+-induced pancreatic oxidative stress. Journal of Integrative Medicine, 2018, 16(3): 192-198.
[9] Chun-song Hu, Tengiz Tkebuchava. SEEDi1.0-3.0 strategies for major noncommunicable diseases in China. Journal of Integrative Medicine, 2017, 15(4): 265-269.
[10] Uduak Akpan Okon, Idorenyin Udo Umoren. Comparison of antioxidant activity of insulin, Ocimum gratissimum L., and Vernonia amygdalina L. in type 1 diabetic rat model. Journal of Integrative Medicine, 2017, 15(4): 302-309.
[11] Nazli Samadi, Hassan Mozaffari-Khosravi, Masoud Rahmanian, Mohsen Askarishahi. Effects of bee propolis supplementation on glycemic control, lipid profile and insulin resistance indices in patients with type 2 diabetes: A randomized, double-blind clinical trial. Journal of Integrative Medicine, 2017, 15(2): 124-134.
[12] Ausanee Wanchai, Duangjai Phrompayak. Use of complementary and alternative medicine among Thai patients with type 2 diabetes mellitus. Journal of Integrative Medicine, 2016, 14(4): 297-305.
[13] Yee Chi Peggy Wong. Need of integrated dietary therapy for persons with diabetes mellitus and “unhealthy” body constitution presentations. Journal of Integrative Medicine, 2016, 14(4): 255-268.
[14] Sulaiman Al-Eidi, SalwaTayel, Fatima Al-Slail, Naseem Akhtar Qureshi, Imen Sohaibani, Mohamed Khalil, Abdullah Mohammad Al-Bedah. Knowledge, attitude and practice of patients with type 2 diabetes mellitus towards complementary and alternative medicine. Journal of Integrative Medicine, 2016, 14(3): 187-196.
[15] Mohammad Hashem Hashempur, Mojtaba Heydari, Seyed Hamdollah Mosavat, Seyyed Taghi Heydari, Mesbah Shams. Complementary and alternative medicine use in Iranian patients with diabetes mellitus. Journal of Integrative Medicine, 2015, 13(5): 319-325.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Zhao-guo Li. Discussion on English translation of commonly used sentences in traditional Chinese medicine: part one. Journal of Chinese Integrative Medicine, 2008, 6(1): 107-110
[2] Jun Hu, Jian-ping Liu. Non-invasive physical treatments for chronic/recurrent headache. Journal of Chinese Integrative Medicine, 2008, 6(1): 31
[3] Yi-ting He, Qing-lin Zha, Jian-ping Yu, Yong Tan, Cheng Lu, Ai-ping Lv. Principal factor analysis of symptoms of rheumatoid arthritis and their correlations with efficacy of traditional Chinese medicine and Western medicine. Journal of Chinese Integrative Medicine, 2008, 6(1): 32-36
[4] Dong Yang, Yong-ping Du, Qing Shen, Wei Chen, Yan Yu, Guang-lei Chen. Expression of alpha-smooth muscle actin in renal tubulointerstitium in patients with kidney collateral stasis. Journal of Chinese Integrative Medicine, 2008, 6(1): 41-44
[5] Xue-mei Liu, Qi-fu Huang, Yun-ling Zhang, Jin-li Lou, Hong-sheng Liu, Hong Zheng. Effects of Tribulus terrestris L. saponion on apoptosis of cortical neurons induced by hypoxia-reoxygenation in rats. Journal of Chinese Integrative Medicine, 2008, 6(1): 45-50
[6] Zhi-chun Jin. Problems in establishing clinical guideline for integrated traditional Chinese and Western medicine. Journal of Chinese Integrative Medicine, 2008, 6(1): 5-8
[7] SUN Ming-yu, ZUO Jian, DUAN Ji-feng, HAN Jun, FAN Shi-ming, ZHANG Wei, ZHU Li-fang, YAO Ming-hui. Antitumor activities of kushen flavonoids in vivo and in vitro. Journal of Chinese Integrative Medicine, 2008, 6(1): 51-59
[8] Min Cheng, Qiong Feng, Shu-wen Qian, Hui Gao, Cui-qing Zhu. Preliminary assay of p-amyloid binding elements in heart-beneficial recipe. Journal of Chinese Integrative Medicine, 2008, 6(1): 68-72
[9] Hai-feng Wei, Bai-liu Ya, Ling Zhao, Cui-fei Ye, Li Zhang, Lin Li. Evaluation of tongue manifestation of blood stasis syndrome and its relationship with blood rheological disorder in a rat model of transient brain ischemia. Journal of Chinese Integrative Medicine, 2008, 6(1): 73-76
[10] Xi Lin, Jian-ping Liu. Tai chi for treating rheumatoid arthritis. Journal of Chinese Integrative Medicine, 2008, 6(1): 82