Search JIM Advanced Search

Journal of Chinese Integrative Medicine ›› 2009, Vol. 7 ›› Issue (9): 860-867.doi: 10.3736/jcim20090912

• Original Experimental Research • Previous Articles     Next Articles

Effects of Naomaitong combined with mobilization of bone marrow mesenchymal stem cells on neuron apoptosis and expressions of Fas, FasL and caspase-3 proteins in rats with cerebral ischemia

Jian-sheng Lia,Jing-xia Liub,Yu-shou Tiana,Wei-hong Renc,Xin-feng Zhanga,Ding-chao Wanga   

  1. a Institute of Geriatrics, Henan College of Traditional Chinese Medicine, Zhengzhou 450008, Henan Province, China
    b School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
    c Clinical Laboratory, the First Affiliated Hospital, Henan College of Traditional Chinese Medicine, Zhengzhou 450006, Henan Province, China
  • Received:2009-05-04 Accepted:2009-07-26 Online:2009-09-20 Published:2009-09-15
  • Contact: Jian-sheng Li E-mail:li_js8@163.com

Objective

To observe the effects of Naomaitong, a compound traditional Chinese herbal medicine, combined with mobilization of bone marrow mesenchymal stem cells (BMSCs) on neuron apoptosis in rats with cerebral ischemia, and to explore the possible mechanism by detecting the expressions of Fas, FasL and caspase-3 proteins.
Methods

Two hundred and two SD rats were divided into sham-operated group, untreated group, recombinant granulocyte colony-stimulating factor (rG-CSF) group, Naomaitong group and Naomaitong plus rG-CSF group (combination group). Focal cerebral ischemia was induced by intraluminal middle cerebral artery occlusion using a nylon thread with some modification. Rats in the rG-CSF group and the untreated group were administered with rG-CSF 10 μg/(kg·d) by subcutaneous injection 3 d before and 2 d after the operation respectively, once a day, and rats in the Naomaitong group and the combination group were intragastrically administered Naomaitong before and after the operation until sacrificed. Two, three, seven and fourteen days after operation, count of CD34-positive cells in peripheral blood and CD34 expression in brain tissue were determined. General neural function score (GNFS) was evaluated. Neuron apoptosis, expressions of Fas, FasL and caspase-3 in rat’s brain were all measured.
Results

Count of CD34-positive cells in peripheral blood and CD34 expression in brain tissue were high in the untreated group, and reached the peak at 3 d and 7 d respectively. CD34 expression in brain tissue was increased in each treated group, especially in the combination group. GNFS was increased at 3 d and 7 d in the untreated group, 7 d and 14 d in the rG-CSF group and the combination group. Expressions of Fas, FasL and caspase-3 were increased 2, 3 and 7 d after operation, while expression of FasL at 2 d in the rG-CSF group, expressions of Fas, FasL and caspase-3 in the combination group were decreased. Expressions of Fas, FasL and caspase-3 at 7 d and 14 d in the combination group were lower than those in the rG-CSF group. Meanwhile, expressions of Fas, FasL and caspase-3 were decreased in each group at 14 d as compared with those at 3 d.
Conclusion

There exists interaction between Naomaitong and BMSC mobilization in the effect of improving nerve function and inhibiting neuron apoptosis in rats after cerebral ischemia. It is implied that Naomaitong combined with BMSC mobilization down-regulates the expressions of Fas and FasL in early phase and then inhibits the apoptosis cascade reaction caused by caspase-3, which causes further inhibition of Fas and FasL expression after cerebral ischemia.

Key words: Cerebral ischemia, Naomaitong, Recombination granulocyte colony-stimulating factor, Bone marrow stem cells, Apoptosis, Rats

Table 1

Count of CD34-positive cells in peripheral blood and expression of CD34 in brain tissues of rats in each group (?x±s)"

Group Time (d) n Count of CD34-positive cells in
peripheral blood (cells/μL)
n Expression of CD34 in brain tissues (IOD)
Sham-operated 14 8 1.17±0.41 8
Untreated 2 7 3.17±0.75* 7 22.04±2.95**
3 7 5.00±1.55* 7 25.69±2.44**
7 6 2.33±1.21 6 33.04±2.62**■■☆
14 6 1.33±1.03■☆☆ 6 16.91±2.95**■■☆★★
Naomaitong 2 7 3.33±1.03□□ 7 25.16±1.58△△□□
3 6 5.67±1.03□□■ 6 28.15±1.22△△□□
7 7 2.50±1.05□□☆ 7 34.61±1.20△△□□■■☆☆
14 6 1.67±0.82□□■☆☆ 6 19.88±1.62△△□□■☆☆★★
rG-CSF 2 8 8.83±2.14△▲ 7 43.21±4.41△△▲▲
3 7 13.50±1.87△△▲▲□□■■ 7 45.79±1.76△△▲▲
7 7 5.33±1.21△△▲▲□□■☆☆ 7 52.09±2.86△△▲▲■■☆
14 6 2.00±0.89□□■■☆★ 6 29.73±1.99△△▲▲■■☆☆★★
Combination 2 8 8.50±2.43△△ 7 45.04±2.04△△
3 7 15.83±1.17△△■■ 6 52.47±1.97△△■■
7 7 7.50±1.05△△☆☆ 6 61.73±2.67△△■■☆☆
14 7 3.17±0.75△■☆☆★★ 7 36.16±2.11△△■■☆☆★★

Table 2

General neural function score of rats in each group (?x±s)"

Group Time (d) n Score of general
neural function
Sham-operated 14 9 18.00±0.00
Untreated 2 8 8.14±0.69**
3 8 9.13±0.54**
7 7 10.53±0.76**■■☆
14 7 12.38±0.52**■■☆☆★★
Naomaitong 2 9 9.50±0.54△△
3 9 10.75±0.71△■
7 8 12.29±0.76△△□■■☆☆
14 7 14.03±0.64△△□□■■☆☆★
rG-CSF 2 8 8.71±0.76▲□
3 8 9.59±0.49▲□
7 7 11.86±0.69△□□■■☆☆
14 7 13.38±0.52△△□□■■☆☆★
Combination 2 8 9.48±0.64△△
3 7 10.88±0.84△△■
7 7 13.71±0.76△△■■☆☆
14 8 15.13±0.64△△■■☆☆★★

Table 3

Count of apoptosis cells and expression of caspase-3 in brain tissues of rats in each group (?x±s)"

Group Time (d) n Count of apoptosis cells
(cells/field)
n Expression of caspase-3(IOD)
Sham-operated 14 8 6.77±1.84 7 17.76±3.91
Untreated 2 7 86.25±5.26** 7 31.64±6.78**
3 7 58.24±13.88** 7 29.51±8.10**
7 6 39.97±1.73**■■ 6 25.49±5.82**
14 6 37.47±2.68**■■ 6 22.68±4.28**
Naomaitong 2 7 64.33±10.71△△ 7 27.89±2.79
3 7 49.03±9.88 7 24.44±7.70
7 7 36.62±5.04□□ 6 18.68±4.25△□□
14 6 25.06±7.43△□□■■ 6 16.16±3.62△□□■■
rG-CSF 2 7 67.97±11.08△△▲▲ 7 28.03±4.16
3 7 46.53±3.41▲□□ 6 24.98±4.30
7 7 35.96±4.13□□ 7 22.24±3.02▲▲□
14 6 34.03±6.03□□■ 6 19.27±5.06▲□□■
Combination 2 7 50.46±7.62△△ 6 24.46±3.97
3 6 35.73±5.41△△ 6 18.02±3.21△△
7 6 29.49±6.04△△ 6 14.69±4.25△△
14 7 23.56±12.37△■ 7 12.80±3.05△△■

Table 4

Expressions of Fas and FasL in brain tissues of rats in each group (?x±s, IOD)"

Group Time (d) n Fas n FasL
Sham-operated 14 7 23.55±5.04 7 24.77±3.34
Untreated 2 7 42.57±6.55** 7 43.78±5.05**
3 7 37.14±7.16** 7 38.05±2.98**
7 6 32.98±5.25**■■ 6 34.55±10.54*■
14 6 28.37±4.24■■☆ 6 26.76±3.00■■☆☆★
Naomaitong 2 7 35.94±5.38 7 38.26±9.74□
3 7 30.48±4.90 7 32.16±7.99□
7 7 25.92±3.37△□■■ 6 25.76±5.34△□■■
14 6 21.31±3.98△□■■☆☆ 6 19.10±3.62△■■☆☆
rG-CSF 2 7 40.63±11.28 7 30.65±3.06△△
3 7 36.83±7.87□□ 6 33.59±3.74□□
7 7 27.82±6.23□☆☆ 7 26.44±7.79□
14 6 22.24±4.60□■☆☆ 6 22.84±9.95□■☆☆
Combination 2 7 30.41±6.67△△ 6 28.75±8.91△△
3 6 24.35±5.58△△ 6 23.46±6.58△△
7 6 18.94±5.05△△■■ 6 16.78±3.21△△■■
14 7 13.78±1.84△△■■☆☆ 7 14.51±3.69△△■■☆
[1] Zhao YQ, Luo YM, Qiao J, Xiao BG, Lu CZ . Fibronectin and neuroprotective effect of granulocyte colony-stimulating factor in focal cerebral ischemia[J]. Brain Res, 2006,1098(1):161-169
doi: 10.1016/j.brainres.2006.02.140
[2] Isele NB, Lee HS, Landshamer S, Straube A, Padovan CS, Plesnila N, Culmsee C . Bone marrow stromal cells mediate protection through stimulation of PI3-K/Akt and MAPK signaling in neurons[J]. Neurochem Int, 2007,50(1):243-250
doi: 10.1016/j.neuint.2006.08.007
[3] Zhang ZQ, Gao SZ, Liu XP, Zhu ZX . G-CSF mobilizes hematopoietic stem cells to differentiate into neuron-like cells in MCAO/R rats[J]. Ji Chu Yi Xue Yu Lin Chuang, 2004,24(3):310-313
doi: 10.3969/j.issn.1001-6325.2004.03.016
张子强, 高顺宗, 刘雪平, 朱竹先 . G-CSF动员自体造血干细胞在大鼠MCAO/R模型分化为神经元样细胞[J]. 基础医学与临床, 2004,24(3):310-313
doi: 10.3969/j.issn.1001-6325.2004.03.016
[4] Ren XQ, Li JS, Feng YM, Lu YQ . Neuro-protective effect of Naomaitong to brain damage after focal cerebral ischemia reperfusion(I/R) in the aged rats[J]. Zhongguo Zhong Yao Za Zhi, 2004,28(1):66-70
doi: 10.3321/j.issn:1001-5302.2004.01.020
任小巧, 李建生, 封银曼, 卢跃卿 . 脑脉通对老龄大鼠脑缺血再灌注损伤脑保护作用的研究[J]. 中国中药杂志, 2004,28(1):66-70
doi: 10.3321/j.issn:1001-5302.2004.01.020
[5] Ren XQ, Li JS, Liu K, Zhao YW, Liu ZG . Effects of Naomaitong on apoptosis in rats with cerebral ischemia-reperfusion injury[J]. Zhongguo Lao Nian Xue Za Zhi, 2005,25(9):1067-1068
doi: 10.3969/j.issn.1005-9202.2005.09.035
任小巧, 李建生, 刘轲, 赵跃武, 刘正国 . 脑脉通对老龄大鼠脑缺血/再灌注细胞凋亡的影响[J]. 中国老年学杂志, 2005,25(9):1067-1068
doi: 10.3969/j.issn.1005-9202.2005.09.035
[6] Li PT, Ji H, Huang QF, Jia X, Yan J . Study on Jiedu Tongluo Fang improving regeneration of neuronal protrusion after cerebral ischemic damage[J]. Shen Jing Jie Pou Xue Za Zhi, 2002,18(4):337-341
doi: 10.3969/j.issn.1000-7547.2002.04.012
李澎涛, 冀宏, 黄启福, 贾旭, 严京 . 解毒通络方促进脑缺血损伤后神经元突起再生的研究[J]. 神经解剖学杂志, 2002,18(4):337-341
doi: 10.3969/j.issn.1000-7547.2002.04.012
[7] Cao YJ, Cheng YB . The improvement and discussion of the model of focal cerebral ischemia/reperfusion with suture-occluded method in rats[J]. Zhongguo Ying Yong Sheng Li Xue Za Zhi, 2001,17(2):198-200
doi: 10.3969/j.issn.1000-6834.2001.02.025
曹勇军, 程彦斌 . 线栓法建立大鼠局灶性脑缺血/再灌注模型的改进与探讨[J]. 中国应用生理学杂志, 2001,17(2):198-200
doi: 10.3969/j.issn.1000-6834.2001.02.025
[8] Song SX, Deng ZF, Wang Y, Lai XL, Li M . Improvement of neurological deficits by transplantation of bone marrow stromal cells after cerebral ischemia in rats[J]. Zhongguo Wei Qin Xi Shen Jing Wai Ke Za Zhi, 2005,10(2):77-79
doi: 10.3969/j.issn.1009-122X.2005.02.010
宋书欣, 邓志锋, 汪泱, 赖贤良, 李明 . 骨髓间充质干细胞移植治疗脑缺血大鼠的实验研究[J]. 中国微侵袭神经外科杂志, 2005,10(2):77-79
doi: 10.3969/j.issn.1009-122X.2005.02.010
[9] Jin K, Graham SH, Mao X, Nagayama T, Simon RP, Greenberg DA . Fas(CD95) may mediate delayed cell death in hippocampal CA1 sector after global cerebral ischemia[J]. J Cereb Blood Flow Metab, 2001,21(12):1411-1421
doi: 10.1097/00004647-200112000-00005
[10] Wang J, Hu JP, Li J, Gao L . Effects of Naoluoxintong on the expressions of Fas and FasL, cerebral edema and neurosigns in rats with local cerebral ischemia-reperfusion injury[J]. Zhonghua Zhong Yi Yao Za Zhi, 2005,20(2):86-88
doi: 10.3969/j.issn.1673-1727.2005.02.006
王键, 胡建鹏, 李净, 郜峦 . 脑络欣通对脑缺血再灌注大鼠Fas、FasL蛋白表达,脑水肿及神经体征的影响[J]. 中华中医药杂志, 2005,20(2):86-88
doi: 10.3969/j.issn.1673-1727.2005.02.006
[11] Solaroglu I, Tsubokawa T, Cahill J, Zhang JH . Anti-apoptotic effect of granulocyte-colony stimulating factor after focal cerebral ischemia in the rat[J]. Neuroscience, 2006,143(4):965-974
doi: 10.1016/j.neuroscience.2006.09.014
[12] Zhang ZQ, Zhu ZX, Liu XP, Xie J, Miao H, Li T . Effects of mobilized hematopoietic stem cells on the expression of C-FOS mRNA in focal cerebral ischemia/reperfusion rats[J]. Ji Chu Yi Xue Yu Lin Chuang, 2006,26(4):420-424
doi: 10.3969/j.issn.1001-6325.2006.04.017
张子强, 朱竹先, 刘雪平, 解建, 苗华, 李涛 . 动员造血干细胞对局灶性脑缺血再灌注大鼠脑组织C-FOS mRNA表达的影响[J]. 基础医学与临床, 2006,26(4):420-424
doi: 10.3969/j.issn.1001-6325.2006.04.017
[13] Liu JX, Li JS, Zhao YW, Kong LF, Sun J, Guo XY, Li N, Su J . Protective effects of Naomaitong associated with MSCs implanting via artery in rats with cerebral ischemia[J]. Zhong Yi Yan Jiu, 2007,20(6):12-16
刘敬霞, 李建生, 赵跃武, 孔令飞, 孙捷, 郭晓燕, 李宁, 苏静 . 脑脉通联合骨髓间充质干细胞经动脉移植保护大鼠脑缺血损伤的研究[J]. 中医研究, 2007,20(6):12-16
[14] Wu ZQ, Zhang L, Fang GM . The effects of Yiqi Huoxue on Fas and FasL protein expression, cerebral edema and nervous symptom following local cerebral ischemia-reperfusion injury in model rats[J]. Yao Wu Yan Jiu, 2004,13(10):27-29
吴著群, 章丽, 方国民 . 益气活血方对脑缺血-再灌注损伤脑水肿、神经体征及Fas和FasL蛋白表达的影响[J]. 药物研究, 2004,13(10):27-29
[1] Cai-lian Fana, Wan-jun Caib, Meng-nan Ye, Miao Chen, Yi Dai. Qili Qiangxin, a compound herbal medicine formula, alleviates hypoxia-reoxygenation-induced apoptotic and autophagic cell death via suppression of ROS/AMPK/mTOR pathway in vitro. Journal of Integrative Medicine, 2022, 20(4): 365-375.
[2] Hong-xiao Li, Ling Shi, Shang-jie Liang Chen-chen Fang, Qian-qian Xu, Ge Lu, Qian Wang, Jie Cheng, Jie Shen, Mei-hong Shen. Moxibustion alleviates decreased ovarian reserve in rats by restoring the PI3K/AKT signaling pathway. Journal of Integrative Medicine, 2022, 20(2): 163-172.
[3] Mohamed S. Othman, Sofian T. Obeidat, Amal H. Al-Bagawi, Mohamed A. Fareid, Alaa Fehaid, Ahmed E. Abdel Moneim. Green-synthetized selenium nanoparticles using berberine as a promising anticancer agent#br#
#br#
. Journal of Integrative Medicine, 2022, 20(1): 65-72.
[4] Hyongjun Jeon, Hee-Young Kim, Chang-Hwan Bae, Yukyung Lee, Sungtae Koo, Seungtae Kim. Korean red ginseng decreases 1-methyl-4-phenylpyridinium-induced mitophagy in SH-SY5Y cells. Journal of Integrative Medicine, 2021, 19(6): 537-544.
[5] Bing-rong Li, Shi-yun Shao, Long Yuan, Ru Jia, Jian Sun, Qing Ji, Hua Sui, Li-hong Zhou, Yi Zhang, Hui Liu, Qi Li, Yan Wang, Bi-meng Zhang. Effects of mild moxibustion on intestinal microbiome and NLRP3 inflammasome in rats with 5-fluorouracil-induced intestinal mucositis. Journal of Integrative Medicine, 2021, 19(2): 144-157.
[6] Porwornwisit Tritripmongkol, Tullayakorn Plengsuriyakarn, Mayuri Tarasuk, Kesara Na-Bangchang. In vitro cytotoxic and toxicological activities of ethanolic extract of Kaempferia galanga Linn. and its active component, ethyl-p-methoxycinnamate, against cholangiocarcinoma. Journal of Integrative Medicine, 2020, 18(4): 326-333.
[7] Sitthichai Iamsaard, Supatcharee Arun, Jaturon Burawat, Supataechasit Yannasithinon, Saranya Tongpan, Sudtida Bunsueb, Natthapol Lapyuneyong, Pannawat Choowong-in, Nareelak Tangsrisakda, Chadaporn Chaimontri, Wannisa Sukhorum. Evaluation of antioxidant capacity and reproductive toxicity of aqueous extract of Thai Mucuna pruriens seeds. Journal of Integrative Medicine, 2020, 18(3): 265-273.
[8] Varuni Colamba Pathiranage, Ira Thabrew, Sameera R. Samarakoon, Kamani H. Tennekoon, Umapriyatharshini Rajagopalan, Meran K. Ediriweera. Evaluation of anticancer effects of a pharmaceutically viable extract of a traditional polyherbal mixture against non-small-cell lung cancer cells. Journal of Integrative Medicine, 2020, 18(3): 242-252.
[9] Maged Mohamed Maher Abou-Hashem, Dina Mohamed Abo-elmatty, Noha Mostafa Mesbah, Ahmed Mohamed Abd EL-Mawgoud. Induction of sub-G0 arrest and apoptosis by seed extract of Moringa peregrina (Forssk.) Fiori in cervical and prostate cancer cell lines. Journal of Integrative Medicine, 2019, 17(6): 410-422.
[10] Supakanya Kumkarnjana, Rutt Suttisri, Ubonthip Nimmannit, Apirada Sucontphunt, Mattaka Khongkow, Thongchai Koobkokkruad, Nontima Vardhanabhuti. Flavonoids kaempferide and 4,2′-dihydroxy-4′,5′,6′-trimethoxychalcone inhibit mitotic clonal expansion and induce apoptosis during the early phase of adipogenesis in 3T3-L1 cells. Journal of Integrative Medicine, 2019, 17(4): 288-295.
[11] Shriniwas S. Basaiyye, Sanjay Kashyap, Kannan Krishnamurthi, Saravanadevi Sivanesan. Induction of apoptosis in leukemic cells by the alkaloid extract of garden cress (Lepidium sativum L.). Journal of Integrative Medicine, 2019, 17(3): 221-228.
[12] Carlos R. Oliveira, Daniel G. Spindola, Daniel M. Garcia, Adolfo Erustes, Alexandre Bechara, Caroline Palmeira-dos-Santos, Soraya S. Smaili, Gustavo J.S. Pereira, André Hinsberger, Ezequiel P. Viriato, Maria Cristina Marcucci, Alexandra C.H.F. Sawaya, Samantha L. Tomaz, Elaine G. Rodrigues, Claudia Bincoletto. Medicinal properties of Angelica archangelica root extract: Cytotoxicity in breast cancer cells and its protective effects against in vivo tumor development. Journal of Integrative Medicine, 2019, 17(2): 132-140.
[13] Bruno José Martins Da Silva, Sandro Wilson Gomes Pereira, Ana Paula Drummond Rodrigues, José Luiz Martins Do Nascimento, Edilene Oliveira Silva. In vitro antileishmanial effects of Physalis angulata root extract on Leishmania infantum. Journal of Integrative Medicine, 2018, 16(6): 404-410.
[14] Morufu Eyitayo Balogun, Elizabeth Enohnyaket Besong, Jacinta Nkechi Obimma, Ogochukwu Sophia Mbamalu, Fankou Serges Athanase Djobissie. Protective roles of Vigna subterranea (Bambara nut) in rats with aspirin-induced gastric mucosal injury. Journal of Integrative Medicine, 2018, 16(5): 342-349.
[15] Lucky Legbosi Nwidu, Raphael Ellis Teme. Hot aqueous leaf extract of Lasianthera africana (Icacinaceae) attenuates rifampicin-isoniazid-induced hepatotoxicity. Journal of Integrative Medicine, 2018, 16(4): 263-272.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Dong Yang, Yong-ping Du, Qing Shen, Wei Chen, Yan Yu, Guang-lei Chen. Expression of alpha-smooth muscle actin in renal tubulointerstitium in patients with kidney collateral stasis. Journal of Chinese Integrative Medicine, 2008, 6(1): 41-44
[2] Hai-feng Wei, Bai-liu Ya, Ling Zhao, Cui-fei Ye, Li Zhang, Lin Li. Evaluation of tongue manifestation of blood stasis syndrome and its relationship with blood rheological disorder in a rat model of transient brain ischemia. Journal of Chinese Integrative Medicine, 2008, 6(1): 73-76
[3] Xi Lin, Jian-ping Liu. Herbal medicines for viral myocarditis. Journal of Chinese Integrative Medicine, 2008, 6(1): 76
[4] Xi Lin, Jian-ping Liu. Tai chi for treating rheumatoid arthritis. Journal of Chinese Integrative Medicine, 2008, 6(1): 82
[5] Liang-ping Hu, Hui Gao. Discrimination of errors in statistical analysis of medical papers published in the first issue of 2006 in Journal of Chinese Integrative Medicine. Journal of Chinese Integrative Medicine, 2008, 6(1): 98-106
[6] Yan-bo Zhu , Qi Wang, Cheng-yu Wu, Guo-ming Pang, Jian-xiong Zhao, Shi-lin Shen, Zhong-yuan Xia , Xue Yan . Logistic regression analysis on relationships between traditional Chinese medicine constitutional types and overweight or obesity. Journal of Chinese Integrative Medicine, 2010, 8(11): 1023-1035
[7] Wei Xu, Meng Shi, Jian-gang Liu, Cheng-long Wang . Collagen protein expressions in ischemic myocardium of rats with acute myocardial infarction and effects of qi-tonifying, yin-tonifying and blood-activating herbs and detoxifying and blood-activating herbs. Journal of Chinese Integrative Medicine, 2010, 8(11): 1041-1047
[8] Tao Wang , Feng Qin. Effects of Chinese herbal medicine Xiaoyao Powder on monoamine neurotransmitters in hippocampus of rats with postpartum depression. Journal of Chinese Integrative Medicine, 2010, 8(11): 1075-1079
[9] Ying Xu , Chang-chun Zeng , Xiu-yu Cai , Rong-ping Guo , Guang Nie , Ying Jin. Chromaticity and optical spectrum colorimetry of the tongue color in different syndromes of primary hepatic carcinoma. Journal of Chinese Integrative Medicine, 2012, 10(11): 1263-1271
[10] Xiang-ying Mao , Qin Bian , Zi-yin Shen. Analysis of the osteogenetic effects exerted on mesenchymal stem cell strain C3H10T1/2 by icariin via MAPK signaling pathway in vitro. Journal of Chinese Integrative Medicine, 2012, 10(11): 1272-1278