Search JIM Advanced Search

Journal of Chinese Integrative Medicine ›› 2008, Vol. 6 ›› Issue (5): 473-477.doi: 10.3736/jcim20080508

• Original Clinical Research • Previous Articles     Next Articles

Effects of low-protein diet plus α-keto acid on micro-inflammation and the relationship between micro-inflammation and nutritional status in patients performing continuous ambulatory peritoneal dialysis: a randomized controlled trial

Wei Chen, Zhi-yong Guo(), Hao Wu, Li-jing Sun, Li-li Cai, Hai-yan Xu   

  1. Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
  • Received:2008-03-14 Online:2008-05-20 Published:2008-05-15
  • Contact: GUO Zhi-yong

Objective: To investigate the effects of the combination of α-keto acid and low-protein diet on the levels of serum cytokines in patients performing continuous ambulatory peritoneal dialysis (CAPD) and to explore the relationship between inflammation and malnutrition in CAPD patients.
Methods: Eighty-nine CAPD patients were randomized into three groups, and 78 cases completed a one-year follow-up and with complete data. There were 31 cases in low-protein diet plus α-keto acid group, 26 cases in low-protein diet group and 21 cases in routine-protein diet group. The levels of serum albumin (Alb), prealbumin (PA), retinol-binding protein (RBP), transferrin (TRF), cholesterol (TC), triglycerides (TG), leptin, and triceps skinfold thickness (TSF), mid-arm muscle circumference (MAMC), body mass index (BMI) were measured. The changes of serum interleukin-1α (IL-1α), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and C-reactive protein (CRP) were also detected.
Results: Compared with low-protein diet group, serum levels of PA, RBP and TRF were significantly increased both in low-protein diet plus α-keto acid and routine-protein diet groups (P<0.01), however, there was no significant difference in the levels of PA, RBP and TRF between low-protein diet plus α-keto acid group and routine-protein diet group. There was an increased tendency in the content of Alb, TC, TG, BMI, TSF and MAMC, but there were no significant differences. The plasma levels of IL-1α, IL-6 and TNF-α in low-protein diet plus α-keto acid group were decreased as compared with the routine-protein diet group, but there were no significant differences. The plasma level of CRP in low-protein diet plus α-keto acid group was lower than that in the routine-protein diet group (P<0.01).
Conclusion: The combination of α-keto acid and low-protein diet can ameliorate malnutrition and micro-inflammation in CAPD patients.

Key words: low-protein diet, keto-acids, peritoneal dialysis, inflammation, malnutrition

CLC Number: 

  • R459.51

Table 1

General data in three groups"

Baseline data Routine-protein diet
Low-protein diet
Low-protein diet plus α-keto acid
Age ($\bar{x}$±s, years) 68.7±15.9 64.1±10.7 67.2±12.5
Male/Female 12/9 15/11 18/13
Duration of peritoneal dialysis($\bar{x}$±s,months) 34.7±19.6 29.5±20.1 31.3±24.8
Diabetic patient (%) 19.0 (4/21) 11.5 (3/26) 16.1 (5/31)
BMI ($\bar{x}$±s, kg/m2) 25.36±6.13 22.14±2.19 23.97±3.02
Urine volume ($\bar{x}$±s, ml/d) 993±289 1 190±478 1 067±325
BUN ($\bar{x}$±s, mmol/L) 14.07±5.33 13.41±6.76 11.23±5.91
SCr ($\bar{x}$±s, μmol/L) 845.52±120.87 812.46±157.91 782.09±211.37
Amino acids ($\bar{x}$±s, mg/L) 359.0±143.5 341.7±115.4 353.2±141.9
Energy intake [$\bar{x}$±s, kcal/(kg·d)] 1 709±1 045 1 671±723 1 878±821
nPNA [$\bar{x}$±s, g/(kg·d)] 1.03±0.35 0.77±0.21 0.81±0.19
Alb ($\bar{x}$±s, g/L) 35.7±6.3 33.1±4.5 34.1±6.1
PA ($\bar{x}$±s, mg/L) 178.1±81.9 191.4±69.6 181.5±73.2
Urea Kt/V ($\bar{x}$±s) 1.78±0.33 1.81±0.21 1.85±0.56
Ccr [x±s, L/(week·1.73 m2)] 85.2±17.7 83.4±16.9 87.3±21.2
EPO dosage ($\bar{x}$±s, kU/week) 6.02±1.98 6.13±2.16 6.08±2.01
TC ($\bar{x}$±s, mmol/L) 4.56±1.84 4.34±1.11 4.98±1.23
TG ($\bar{x}$±s, mmol/L) 1.48±0.61 1.21±0.40 1.32±0.56
TSF ($\bar{x}$±s, mm) 23.10±5.67 20.44±6.02 22.77±7.12
MAMC ($\bar{x}$±s, mm) 20.11±2.78 18.21±3.26 19.34±2.15
RBP ($\bar{x}$±s, mg/L) 16.4±8.2 18.4±7.1 17.2±9.7
TRF ($\bar{x}$±s, mg/L) 1.79±1.34 1.67±0.56 1.41±1.34
Leptin ($\bar{x}$±s, μg/L) 51.1±17.3 49.3±19.1 53.2±19.4

Table 2

(to be continued) Changes of nutritional status in CAPD patients before and after treatment in three groups ($\bar{x}$±s)"

Group n BMI (kg/m2) SCr (μmol/L) Alb (g/L) TC (mmol/L) TG (mmol/L)
Routine-protein diet
Pre-treatment 21 25.36±6.13 845.52±120.87 35.7±6.3 4.56±1.84 1.48±0.61
Post-treatment 21 27.03±7.78 879.23±112.84**△△ 37.2±7.7 5.71±2.21 1.83±0.92
Low-protein diet
Pre-treatment 26 22.14±2.19 812.46±157.91 33.1±4.5 4.34±1.11 1.21±0.40
Post-treatment 26 24.12±4.39 714.61±145.09 34.1±6.5 4.96±1.61 1.53±0.56
Low-protein diet plus α-keto acid
Pre-treatment 31 23.97±3.02 782.09±211.37 34.1±6.1 4.98±1.23 1.32±0.56
Post-treatment 31 25.86±5.23 838.17±216.83**△△ 36.4±7.7 5.35±1.40 1.72±0.78
Group n TSF (mm) MAMC (mm) RBP (mg/L) PA (mg/L) TRF (mg/L) Leptin (μg/L)
Routine-protein diet
Pre-treatment 21 23.10±5.67 20.11±2.78 16.4±8.2 178.1±81.9 1.79±1.34 51.1±17.3
Post-reatment 21 25.11±7.24 23.22±4.90 33.3±12.1** 291.4±101.6** 3.98±1.55** 33.1±27.1**
Low-protein diet
Pre-treatment 26 20.44±6.02 18.21±3.26 18.4±7.1 191.4±69.6 1.67±0.56 49.3±19.1
Post-reatment 26 22.80±7.10 20.17±3.37 19.1±5.9 210.4±91.9 1.92±0.73 47.9±31.5
Low-protein diet plus α-keto acid
Pre-treatment 31 22.77±7.12 19.34±2.15 17.2±9.7 181.5±73.2 1.41±1.34 53.2±19.4
Post-reatment 31 24.78±8.16 21.34±3.58 31.8±11.7** 282.7±87.2** 3.11±1.14** 37.5±27.1**

Table 3

Changes of serum inflammation cytokines in CAPD patients before and after treatment in three groups ($\bar{x}$±s)"

Group n IL-1α (ng/L) IL-6 (ng/L) TNF-α (ng/L) CRP (mg/L)
Routine-protein diet
Pre-treatment 21 36.09±13.19 11.99±1.43 167.55±62.65 17.88±10.79
Post-treatment 21 31.56±13.33 7.08±2.81 123.40±10.99 9.12±5.08**
Low-protein diet
Pre-treatment 26 37.33±9.77 11.02±3.79 140.78±43.09 19.51±7.33
Post-treatment 26 35.64±10.78 9.34±4.56 129.02±59.55 16.21±2.39
Low-protein diet plus α-keto acid
Pre-treatment 31 39.41±11.23 12.67±7.21 154.89±78.11 15.76±4.45
Post-treatment 31 33.40±12.81 8.19±6.35 117.78±56.77 8.80±3.67**
[1] Moshyedi AK, Josephs MD, Abdalla EK , et al. Increased leptin expression in mice with bacterial peritonitis is partially regulated by tumor necrosis factor alpha[J]. Infect Immun, 1998,66(4):1800-1802
[2] Teplan V, Schück O, Knotek A , et al. Effects of low-protein diet supplemented with ketoacids and erythropoietin in chronic renal failure: a long-term metabolic study[J]. Ann Transplant, 2001,6(1):47-53
[3] Zimmermann J, Herrlinger S, Pruy A , et al. Inflammation enhances cardiovascular risk and mortality in hemodialysis patients[J]. Kidney Int, 1999,55(2):648-658
doi: 10.1046/j.1523-1755.1999.00273.x pmid: 9987089
[4] Stenvinkel P, Heimbürger O, Paultre F , et al. Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure[J]. Kidney Int, 1999,55(5):1899-1911
doi: 10.1046/j.1523-1755.1999.00422.x
[5] Kaizu Y, Ohkawa S, Odamaki M , et al. Association between inflammatory mediators and muscle mass in long-term hemodialysis patients[J].Am J Kidney Dis, 2003, 42: 295-302
doi: 10.1016/S0272-6386(03)00654-1 pmid: 12900811
[6] Kaizu Y, Kimura M, Yoneyama T , et al. Interleukin-6 may mediate malnutrition in chronic hemodialysis patients[J]. Am J Kidney Dis, 1998,31(1):93-100
doi: 10.1053/ajkd.1998.v31.pm9428458 pmid: 9428458
[7] Bergstr?m J, Lindholm B, Lacson E Jr , et al. What are the causes and consequences of the chronic inflammatory state in chronic dialysis patients?[J]. Semin Dial, 2000,13(3):163-175
[8] McCusker FX, Teehan BP, Thorpe KE , et al.How much peritoneal dialysis is required for the maintenance of a good nutritional state? Canada-USA( CANUSA) Peritoneal Dialysis Study Group[J].Kidney Int Suppl, 1996, 56: S56-S61
[9] Panichi V, Migliori M, De Pietro S , et al.The link of biocompatibility to cytokine production[J].Kidney Int Suppl, 2000, 58: 96-103
doi: 10.1046/j.1523-1755.2000.07612.x
[10] Yeun JY, Kaysen GA . Acute phase proteins and peritoneal dialysate albumin loss are the main determinants of serum albumin in peritoneal dialysis patients[J]. Am J Kidney Dis, 1997,30(6):923-927
doi: 10.1016/S0272-6386(97)90105-0
[1] Uday P. Pratap, Hannah P. Priyanka, Karthik R. Ramanathan, Vishak Raman, Lalgi Hima, Srinivasan Thyagarajan. Noni (Morinda citrifolia L.) fruit juice delays immunosenescence in the lymphocytes in lymph nodes of old F344 rats. Journal of Integrative Medicine, 2018, 16(3): 199-207.
[2] Byung Hyuk Han, Yun Jung Lee, Jung Joo Yoon, Eun Sik Choi, Seung Namgung, Xian Jun Jin, Da Hye Jeong, Dae Gill Kang, Ho Sub Lee. Hwangryunhaedoktang exerts anti-inflammation on LPS-induced NO production by suppressing MAPK and NF-κB activation in RAW264.7 macrophages. Journal of Integrative Medicine, 2017, 15(4): 326-336.
[3] Anirudha A. Lande, Shirishkumar D. Ambavade, Uma S. Swami, Prafulla P. Adkara Prashant D. Ambavade, Arun B. Waghamare. Saponins isolated from roots of Chlorophytum borivilianum reduce acute and chronic inflammation and histone deacetylase. Journal of Integrative Medicine, 2015, 13(1): 25-33.
[4] Xin-fang Zhang, Ji Zhu, Wen-ye Geng, Shu-jun Zhao, Chuan-wei Jiang, Sheng-rong Cai, Miao Cheng, Chuan-yun Zhou, Zi-bing Liu. Electroacupuncture at Feishu (BL13) and Zusanli (ST36) down-regulates the expression of orexins and their receptors in rats with chronic obstructive pulmonary disease. Journal of Integrative Medicine, 2014, 12(5): 417-424.
[5] Benjamin Perry, Junzeng Zhang, Tarek Saleh, Yanwen Wang. Liuwei Dihuang, a traditional Chinese herbal formula, suppresses chronic inflammation and oxidative stress in obese rats. Journal of Integrative Medicine, 2014, 12(5): 447-454.
[6] Jian-sheng Li, Ya Li, Su-yun Li, Yuan-yuan Wang, Li Deng, Yan-ge Tian, Su-li Jiang , Ying Wang. Long-term effects of Tiaobu Feishen therapies on systemic and local inflammation responses in rats with stable chronic obstructive pulmonary disease. Journal of Chinese Integrative Medicine, 2012, 10(9): 1039-1048.
[7] Bamidele Victor Owoyele, Omosunkanmi Toyin Adenekan, Ayodele Olufemi Soladoye. Effects of honey on inflammation and nitric oxide production in Wistar rats. Journal of Chinese Integrative Medicine, 2011, 9(4): 447-452.
[8] Daniel Weber, Janelle M Wheat, Geoffrey M Currie. Inflammation and cancer: Tumor initiation, progression and metastasis,and Chinese botanical medicines. Journal of Chinese Integrative Medicine, 2010, 8(11): 1006-1013.
[9] Wen-xiang Zhou, Wen-bin Zheng, Xiao-mei Huang, Ying Zhang, Xiang-zhi Nie, Hong-bing Li, Da He, Lan-qian Xie. Effects of oxymatrine on microinflammatory state in patients undergoing continuous hemodialysis: A randomized controlled trial. Journal of Chinese Integrative Medicine, 2009, 7(8): 736-740.
[10] Qin Wang, Zhao-hui Ni, Min-li Zhu, Shan Mou, Li-ou Cao, Wei Fang. Diagnostic value of CT peritoneography for non-infectious complications of peritoneal dialysis. Journal of Chinese Integrative Medicine, 2008, 6(5): 478-481.
[11] Dan Zhang, Jing Shu, Yi Wang. Salvia Miltiorrhiza injection relieves peritoneal dialysis solution-induced injuries of peritoneal structure and function in rats. Journal of Chinese Integrative Medicine, 2008, 6(5): 517-523.
[12] Hong-xing Zhang, Ling-guang Liu, Li Zhou, Hao Huang, Xuan Li, Min Yang. Effect of scalp acupuncture on inflammatory response in rats with acute cerebral ischemia-reperfusion injury. Journal of Chinese Integrative Medicine, 2007, 5(6): 686-691.
[13] Bing Mao, Wen Li, Wen-qiong Liang. Visceral syndrome differentiation in traditional Chinese medicine and the changes of nutrition status or blood gas analysis in patients with chronic obstructive pulmonary disease. Journal of Chinese Integrative Medicine, 2007, 5(5): 506-509.
[14] Li-jun Xu, Yong-hong Hu, Fu-er Lu, Xin Zou. Experimental study on anti-inflammatory and analgesic effects of Yitieling Paste. Journal of Chinese Integrative Medicine, 2005, 3(4): 303-306.
[15] Xiao-yan Hao, Lin Peng, Lang Ye, Neng-hui Huang, Yue-mao Shen. A study on anti-inflammatory and analgesic effects of alkaloids of Toddalia asiatica. Journal of Chinese Integrative Medicine, 2004, 2(6): 450-452.
Full text



[1] Jun Cai, Hua Wang, Sheng Zhou, Bin Wu, Hua-rong Song, Zheng-rong Xuan. Effect of Sijunzi Decoction and enteral nutrition on T-cell subsets and nutritional status in patients with gastric cancer after operation: A randomized controlled trial. Journal of Chinese Integrative Medicine, 2008, 6(1): 37-40
[2] Jing-yuan Mao, Chang-xiao Liu, Heng-he Wang, Guang-li Wei , Zhen-peng Zhang, Jie Xing, Wang Xian liang , Ying-fei Bi . Effects of Shenmai Injection on serum concentration and pharmacokinetics of digoxin in dogs with heart failure. Journal of Chinese Integrative Medicine, 2010, 8(11): 1070-1074
[3] You-hua Wang , Shang Li , Bin-rui Yang , Lun-qing Zhang , Xin Zhou , Bei-wen Xu, Ming-yuan Li . Use of zebrafish models for the research of traditional Chinese medicine. Journal of Chinese Integrative Medicine, 2012, 10(11): 1189-1197
[4] Hui-min Liu, Xian-bo Wang, Yu-juan Chang, Li-li Gu. Systematic review and meta-analysis of randomized controlled trials of integrative medicine therapy for treatment of chronic severe hepatitis. Journal of Chinese Integrative Medicine, 2012, 10(11): 1211-1228
[5] Ji Chen, Qin Pan, Li-shuang Ye, Jia-ling Huang. English translation of cultural aspects of the titles of traditional Chinese medicine classics based on the skopos theory. Journal of Chinese Integrative Medicine, 2012, 10(11): 1316-1320
[6] Liang-ping Hu, Xiao-lei Bao, Li-xin Tao, Shi-guo Zhou, Xue Guan. Estimation of sample size and testing power (Part 2). Journal of Chinese Integrative Medicine, 2011, 9(11): 1185-1189
[7] Shu Yang, Xin-yue Wang, Shan Jing, Xue Yang, Yi-hua Sheng, Xin Yan. Crohn disease in rats induced by different concentrations of trinitrobenzenesulfonic acid and ethanol. Journal of Chinese Integrative Medicine, 2011, 9(11): 1242-1247
[8] Zhao-guo Li. Discussion on English translation of commonly used sentences in traditional Chinese medicine: part two. Journal of Chinese Integrative Medicine, 2008, 6(2): 213-215
[9] Hui-qun Pang, Xu-dong Xiong. Treatment of respiratory failure in patients with chronic obstructive pulmonary disease with traditional Chinese medicine. Journal of Chinese Integrative Medicine, 2005, 3(1): 66-69
[10] Liu Yue, Xie Ming, Zhang Ye. Dynamic changes of laboratory parameters of rats with type 2 diabetes and insulin resistance: defining their role in development of traditional Chinese medicine syndrome. Journal of Chinese Integrative Medicine, 2012, 10(1): 100-108