Search JIM Advanced Search

Journal of Chinese Integrative Medicine ›› 2010, Vol. 8 ›› Issue (2): 152-157.doi: 10.3736/jcim20100210

• Original Experimental Research • Previous Articles     Next Articles

Effects of Naoerkang on expressions of β-amyloid peptide 1-42 and neprilysin in hippocampus in a rat model of Alzheimer’s disease

 Hai-feng Yuana,Xi Lib, Qian-kun Quanc, Ning-ning Wangb, Yuan Lid, Ming Lib   

  1. a Department of Neurology, the Second Affiliated Hospital, Xi’an Jiaotong University College of Medicine,Xi’an 710004, Shaanxi Province, China;
    b Department of Geriatrics, the Second Affiliated Hospital, Xi’an Jiaotong University College of Medicine,Xi’an 710004, Shaanxi Province, China;
    c Research Center of Rehabilitation Science and Technology, School of Life Science and Technology, Xi5an Jiaotong Univer sity,Xi’an 710049,Shaanxi Province,China;
    d Department of Encephalopathy, Xi5an Electrical Power Center Hospital, Xi5an 710032, Shaanxi Province, China
  • Received:2009-10-29 Accepted:2009-12-16 Online:2010-02-20 Published:2010-02-15
  • Contact: Xi Li


To investigate the effects of Naoerkang (NEK), a compound traditional Chinese herbal medicine, on the expressions of β-amyloid peptide 1-42 (Aβ1-42) and neprilysin (NEP) in hippocampal tissues in a rat model of Alzheimer’s disease (AD).

Forty-eight male SD rats were randomly divided into normal control group, untreated group, piracetam group, low-dose NEK group, medium-dose NEK group, and high-dose NEK group, with 8 rats in each group. Five microliters of Aβ1-42 (2 μg/μL) were injected into CA1 area of hippocampus in rat to establish AD model whereas the normal control rats were injected with same volume of normal saline for comparison. The rats in the NEK groups were treated respectively with high-, medium- and low-dose [60, 30, 15 g/(kg·d)] NEK for 28 days consecutively; piracetam [0.375 g/(kg·d)] was intragastrically administered to rats in the piracetam group; and normal saline was applied in the control and untreated groups. Y-maze test was used for behavioral study to test the learning and memory abilities of rats in different groups. The expressions of Aβ1-42 and NEP in hippocampus were determined by immunohistochemical method, and the results were analyzed by image acquisition and analysis system.

Injection of Aβ1-42 could induce learning and memory dysfunction and up-regulate Aβ1-42 expression in hippocampal tissue in rats of the untreated group. Compared with the normal control group, the abilities of learning and memory of rats in the untreated group were significantly decreased (P<0.01) and the expression of Aβ1-42 was significantly increased (P<0.01) after model establishment. After 28-day administration of NEK and piracetam, the abilities of learning and memory of AD rats in piracetam and low-dose, medium-dose and high-dose NEK groups were significantly improved as compared with the untreated group (P<0.01 or P<0.05); the expression of Aβ1-42 in hippocampal tissues was decreased (P<0.01 or P<0.05) and the expression of NEP was increased (P<0.01 or P<0.05), especially in the high-dose NEK group.

NEK can play the role of anti-dementia by increasing the expression of NEP in hippocampal tissues of AD rats so as to reduce the quantity of Aβ1-42 and by improving the ability of learning and memory of rats with AD.

Key words: Naoerkang, Alzheimer's disease, β-amyloid peptide, Neprilysin, Rats

Figure 1

Site of injection of Aβ1-42 in area CA1 of hippocampus (Anatomical microscopy, ×40)"

Table 1

Learning and memory abilities of rats in different groups tested with Y-maze ($\bar{x}±s$)"

Times of getting electric shock
at the start (learning ability)
Times of getting electric shock after
24 h (memory ability)
Group n After model establishment After treatment After model establishment After treatment
Normal control 8 30.88±4.19 7.14±1.96 3.50±2.39 0.63±0.92
Untreated 8 47.00±6.14** 26.71±2.56** 8.75±2.12** 10.14±3.18**
Piracetam 8 43.25±6.34** 16.63±6.48**△△ 9.38±3.11** 7.13±1.46**△△
Low-dose Naoerkang 8 42.63±5.66** 19.63±3.34**△△□□ 9.13±2.59** 6.63±1.69**△△
Medium-dose Naoerkang 8 44.75±3.73** 17.25±2.38**△△□ 8.88±3.48** 6.00±2.39**△△
High-dose Naoerkang 8 44.75±3.54** 12.63±3.25**△△▲ 8.25±2.82** 4.75±1.91**△△▲

Table 2

Expression of Aβ1-42 in hippocampal tissues of rats in different groups ($\bar{x}±s$)"

Group Expression of Aβ1-42 protein
n CA1 CA3 Dentate gyrus
Normal control 8 169.43±4.43 169.23±1.51 169.66±2.86
Untreated 7 155.08±3.00** 154.70±2.75** 158.64±2.58**
Piracetam 8 165.45±1.48**△△ 164.70±1.60**△△ 165.63±1.86**△△
Low-dose Naoerkang 8 161.21±1.24**△△▲▲□□ 161.92±2.58**△△▲▲□□ 162.87±1.21**△△▲▲□□
Medium-dose Naoerkang 8 164.39±1.60**△△□■ 164.12±1.52 **△△□■ 165.16±1.78**△△□■
High-dose Naoerkang 8 167.39±1.96△△ 166.61±1.51*△△ 167.80±1.44△△▲

Figure 2

Expression of Aβ1-42 in hippocampus in different groups observed by immunohistochemical method (Light microscopy, ×400)A: Normal control group; B: Untreated group; C: Piracetam group; D: Low-dose Naoerkang group; E: Medium-dose Naoerkang group; F: High-dose Naoerkang group."

Table 3

Expression of NEP protein in hippocampal tissues of rats in different groups ($\bar{x}±s$)"

Group n Expression of NEP protein
CA1 CA3 Dentate gyrus
Normal control 8 168.72±2.01 168.72±2.01 168.39±1.03
Untreated 7 168.70±1.11 168.70±1.11 169.00±1.16
Piracetam 8 165.82±1.37**△△ 162.81±1.66**△△ 161.92±2.28**△△
Low-dose Naoerkang 8 167.92±1.37▲▲□□ 165.50±1.63**△△▲▲□□ 166.46±1.67△▲▲□□
Medium-dose Naoerkang 8 166.16±1.26**△△□■ 163.13±1.20**△△ 164.29±1.19**△△▲□■
High-dose Naoerkang 8 164.63±1.32**△△ 161.92±2.16**△△ 161.77±3.45**△△

Figure 3

Expression of NEP in hippocampus in different groups observed by immunohistochemical method (Light microscopy, ×400)A: Normal control group; B: Untreated group; C: Piracetam group; D: Low-dose Naoerkang group; E: Medium-dose Naoerkang group; F: High-dose Naoerkang group."

[1] Huang RX, Liang XL, Liu CL. Clinical neurology[J].Beijing: People's Medical Publishing House, 1998: 505-506
黄如训, 梁秀龄, 刘焯霖 . 临床神经病学[J].北京: 人民卫生出版社, 1998: 505-506
[2] Sudoh S, Frosch MP, Wolf BA . Differential effects of proteases involved in intracellular degradation of amyloid beta-protein between detergent-soluble and -insoluble pools in CHO-695 cells[J]. Biochemistry, 2002,41(4):1091-1099
doi: 10.1021/bi011193l
[3] Selkoe DJ . Alzheimer's disease: genes, proteins, and therapy[J]. Physiol Rev, 2001,81(2):741-766
doi: 10.1152/physrev.2001.81.2.741
[4] Li X, Zhang XF, Qiao CL, Zhang ZY . Influence of Naoerkang on the intracerebral cholinesterase activity and neurons of mice with Alzheimer's disease[J]. Zhongguo Lin Chuang Kang Fu, 2003,7(31):4222-4223
李玺, 张雪飞, 乔成林, 张智燕 . 脑尔康对老年痴呆小鼠脑内胆碱酯酶活性及神经元的影响[J]. 中国临床康复, 2003,7(31):4222-4223
[5] Li X, Wang JJ, Qiao CL, Nie DL . Effects of Naoerkang on learning and memory dysfunction in mouse[J]. Xi'an Yi Ke Da Xue Xue Bao, 1999,20(1):126-127
李玺, 王建军, 乔成林, 聂丹丽 . 脑尔康对小鼠学习记忆障碍的改善作用[J]. 西安医科大学学报, 1999,20(1):126-127
[6] Tian JZ, Xu Y, Shi J, Yin JX, Ji ZJ, Zhao ZW, Sheng SL, Wang YY . Effect of GETO extract on expression of growth-associated protein 43 in CA1 area of hippocampus in Alzheimer’s disease model rats induced by Aβ42 peptide[J]. Zhong Xi Yi Jie He Xin Nao Xue Guan Bing Za Zhi, 2007,5(3):217-219
田金洲, 徐意, 时晶, 尹军祥, 姬志娟, 赵志伟, 盛树力, 王永炎 . 金思维对Aβ42所致AD模型大鼠海马CA1区GAP-43表达的影响[J]. 中西医结合心脑血管病杂志, 2007,5(3):217-219
[7] Bao XM, Shu SY. The rat brain in stereotaxic coordinates[J].Beijing: People's Medical Publishing House, 1990: 42
包新民, 舒斯云 . 大鼠脑立体定位图谱[J]. 北京: 人民卫生出版社, 1990: 42
[8] Li QM, Meng RS, Wei CX, Kan FJ, Huang QH . Effects of Naohuandan recipe on learning and memory abilities of SAM-P/8 mice and its role in anti-oxidation and anti-apoptosis[J]. J Chin Integr Med, 2006,4(1):48-51
李庆明, 蒙荣森, 魏昌秀, 阚方巨, 黄启辉 . 脑还丹对快速老化小鼠学习记忆能力的影响及其抗氧化和抗凋亡作用[J]. 中西医结合学报, 2006,4(1):48-51
[9] Du GH. Experimental pharmacology[J]. Beijing: Peking Union Medical College Press, 2004: 33
杜冠华 . 实验药理学[J].北京: 中国协和医科大学出版社, 2004: 33
[10] Yang P . Beta-amyloid peptide and Alzheimer's disease[J]. Yi Xue Zong Shu, 2001,7(10):604-605
杨萍 . β淀粉样蛋白与阿尔茨海默病研究[J]. 医学综述, 2001,7(10):604-605
[11] Tanzi RE, Moir RD, Wagner SL . Clearance of Alzheimer's Abeta peptide: the many roads to perdition[J]. Neuron, 2004,43(5):605-608
[12] Carson JA, Turner AJ . Beta-amyloid catabolism: roles for neprilysin(NEP) and other metallopeptidases?[J]. J Neurochem, 2002,81(1):1-8
doi: 10.1046/j.1471-4159.2002.00855.x
[13] Eckman EA, Eckman CB . Abeta-degrading enzymes: modulators of Alzheimer's disease pathogenesis and targets for therapeutic intervention[J]. Biochem Soc Trans, 2005,33(Pt 5):1101-1105
[14] Yasojima K, Akiyama H , McGeer EG, McGeer PL.Reduced neprilysin in high plaque areas of Alzheimer brain: a possible relationship to deficient degradation of bata-amyloid peptide[J]. Neurosci Lett, 2001,297(2):97-100
doi: 10.1016/S0304-3940(00)01675-X
[15] Marr RA, Rockenstein E, Mukherjee A, Kindy MS, Hersh LB, Gage FH, Verma IM, Masliah E . Neprilysin gene transfer reduces human amyloid pathology in transgenic mice[J]. J Neurosci, 2003,23(6):1992-1996
doi: 10.1523/JNEUROSCI.23-06-01992.2003
[1] Bing-rong Li, Shi-yun Shao, Long Yuan, Ru Jia, Jian Sun, Qing Ji, Hua Sui, Li-hong Zhou, Yi Zhang, Hui Liu, Qi Li, Yan Wang, Bi-meng Zhang. Effects of mild moxibustion on intestinal microbiome and NLRP3 inflammasome in rats with 5-fluorouracil-induced intestinal mucositis. Journal of Integrative Medicine, 2021, 19(2): 144-157.
[2] Sitthichai Iamsaard, Supatcharee Arun, Jaturon Burawat, Supataechasit Yannasithinon, Saranya Tongpan, Sudtida Bunsueb, Natthapol Lapyuneyong, Pannawat Choowong-in, Nareelak Tangsrisakda, Chadaporn Chaimontri, Wannisa Sukhorum. Evaluation of antioxidant capacity and reproductive toxicity of aqueous extract of Thai Mucuna pruriens seeds. Journal of Integrative Medicine, 2020, 18(3): 265-273.
[3] Morufu Eyitayo Balogun, Elizabeth Enohnyaket Besong, Jacinta Nkechi Obimma, Ogochukwu Sophia Mbamalu, Fankou Serges Athanase Djobissie. Protective roles of Vigna subterranea (Bambara nut) in rats with aspirin-induced gastric mucosal injury. Journal of Integrative Medicine, 2018, 16(5): 342-349.
[4] Lucky Legbosi Nwidu, Raphael Ellis Teme. Hot aqueous leaf extract of Lasianthera africana (Icacinaceae) attenuates rifampicin-isoniazid-induced hepatotoxicity. Journal of Integrative Medicine, 2018, 16(4): 263-272.
[5] Kylie Connolly, Douglas Jackson, Candice Pullen, Andrew Fenning. Alpha-adrenoceptor antagonism by Crassostrea gigas oyster extract inhibits noradrenaline-induced vascular contraction in Wistar rats. Journal of Integrative Medicine, 2015, 13(3): 194-200.
[6] Udhaya Lavinya Baskaran, Sherry Joseph Martin, Rasool Mahaboobkhan, Sabina Evan Prince. Protective role of Triphala, an Indian traditional herbal formulation, against the nephrotoxic effects of bromobenzene in Wistar albino rats. Journal of Integrative Medicine, 2015, 13(2): 115-121.
[7] Hussein O. B. Oloyede, Matthew C. Adaja, Taofeek O. Ajiboye, Musa O. Salawu. Anti-ulcerogenic activity of aqueous extract of Carica papaya seed on indomethacin-induced peptic ulcer in male albino rats. Journal of Integrative Medicine, 2015, 13(2): 105-114.
[8] Anirudha A. Lande, Shirishkumar D. Ambavade, Uma S. Swami, Prafulla P. Adkara Prashant D. Ambavade, Arun B. Waghamare. Saponins isolated from roots of Chlorophytum borivilianum reduce acute and chronic inflammation and histone deacetylase. Journal of Integrative Medicine, 2015, 13(1): 25-33.
[9] Elizabeth Abidemi Balogun, Sylvia Orume Malomo, Joseph Oluwatope Adebayo, Ahmed Adebayo Ishola, Ayodele Olufemi Soladoye, Lawrence Aderemi Olatunji, Olatunji Matthew Kolawole, Stephen Olubunmi Oguntoye, Abiola Samuel Babatunde, Oluwole Busayo Akinola . In vivo antimalarial activity and toxicological effects of methanolic extract of Cocos nucifera (Dwarf red variety) husk fibre. Journal of Integrative Medicine, 2014, 12(6): 504-511.
[10] Urmila Aswar, Mayuri Gurav, Ganesh More, Khaled Rashed, Manoj Aswar. Effect of aqueous extract of Solanum xanthocarpum Schrad. & Wendl. on postmenopausal syndrome in ovariectomized rats. Journal of Integrative Medicine, 2014, 12(5): 439-446.
[11] Xin-fang Zhang, Ji Zhu, Wen-ye Geng, Shu-jun Zhao, Chuan-wei Jiang, Sheng-rong Cai, Miao Cheng, Chuan-yun Zhou, Zi-bing Liu. Electroacupuncture at Feishu (BL13) and Zusanli (ST36) down-regulates the expression of orexins and their receptors in rats with chronic obstructive pulmonary disease. Journal of Integrative Medicine, 2014, 12(5): 417-424.
[12] Benjamin Perry, Junzeng Zhang, Tarek Saleh, Yanwen Wang. Liuwei Dihuang, a traditional Chinese herbal formula, suppresses chronic inflammation and oxidative stress in obese rats. Journal of Integrative Medicine, 2014, 12(5): 447-454.
[13] Upendarrao Golla, Praveen Kumar Gajam, Solomon Sunder Bhimathati. Evaluation of diuretic and laxative activity of hydro-alcoholic extract of Desmostachya bipinnata (L.) Stapf in rats. Journal of Integrative Medicine, 2014, 12(4): 372-378.
[14] Qian Zhang, Xin-hua Xiao, Ming Li, Wen-hui Li, Miao Yu, Hua-bing Zhang, Fan Ping, Zhi-xin Wang, Jia Zheng ​. Chromium-containing traditional Chinese medicine, Tianmai Xiaoke Tablet improves blood glucose through activating insulin-signaling pathway and inhibiting PTP1B and PCK2 in diabetic rats. Journal of Integrative Medicine, 2014, 12(3): 162-170.
[15] Amir Rashidian​, Saeed Mehrzadi, Ali Reza Ghannadi, Parvin Mahzooni, Samira Sadr, Mohsen Minaiyan​. Protective effect of ginger volatile oil against acetic acid-induced colitis in rats: A light microscopic evaluation. Journal of Integrative Medicine, 2014, 12(2): 115-120.
Full text



[1] Dong Yang, Yong-ping Du, Qing Shen, Wei Chen, Yan Yu, Guang-lei Chen. Expression of alpha-smooth muscle actin in renal tubulointerstitium in patients with kidney collateral stasis. Journal of Chinese Integrative Medicine, 2008, 6(1): 41-44
[2] Hai-feng Wei, Bai-liu Ya, Ling Zhao, Cui-fei Ye, Li Zhang, Lin Li. Evaluation of tongue manifestation of blood stasis syndrome and its relationship with blood rheological disorder in a rat model of transient brain ischemia. Journal of Chinese Integrative Medicine, 2008, 6(1): 73-76
[3] Xi Lin, Jian-ping Liu. Herbal medicines for viral myocarditis. Journal of Chinese Integrative Medicine, 2008, 6(1): 76
[4] Xi Lin, Jian-ping Liu. Tai chi for treating rheumatoid arthritis. Journal of Chinese Integrative Medicine, 2008, 6(1): 82
[5] Liang-ping Hu, Hui Gao. Discrimination of errors in statistical analysis of medical papers published in the first issue of 2006 in Journal of Chinese Integrative Medicine. Journal of Chinese Integrative Medicine, 2008, 6(1): 98-106
[6] Yan-bo Zhu , Qi Wang, Cheng-yu Wu, Guo-ming Pang, Jian-xiong Zhao, Shi-lin Shen, Zhong-yuan Xia , Xue Yan . Logistic regression analysis on relationships between traditional Chinese medicine constitutional types and overweight or obesity. Journal of Chinese Integrative Medicine, 2010, 8(11): 1023-1035
[7] Wei Xu, Meng Shi, Jian-gang Liu, Cheng-long Wang . Collagen protein expressions in ischemic myocardium of rats with acute myocardial infarction and effects of qi-tonifying, yin-tonifying and blood-activating herbs and detoxifying and blood-activating herbs. Journal of Chinese Integrative Medicine, 2010, 8(11): 1041-1047
[8] Tao Wang , Feng Qin. Effects of Chinese herbal medicine Xiaoyao Powder on monoamine neurotransmitters in hippocampus of rats with postpartum depression. Journal of Chinese Integrative Medicine, 2010, 8(11): 1075-1079
[9] Ying Xu , Chang-chun Zeng , Xiu-yu Cai , Rong-ping Guo , Guang Nie , Ying Jin. Chromaticity and optical spectrum colorimetry of the tongue color in different syndromes of primary hepatic carcinoma. Journal of Chinese Integrative Medicine, 2012, 10(11): 1263-1271
[10] Xiang-ying Mao , Qin Bian , Zi-yin Shen. Analysis of the osteogenetic effects exerted on mesenchymal stem cell strain C3H10T1/2 by icariin via MAPK signaling pathway in vitro. Journal of Chinese Integrative Medicine, 2012, 10(11): 1272-1278